Microencapsulation of Banana Passion Fruit (Passiflora tripartita Var. Mollissima): A New Alternative as a Natural Additive as Antioxidant


Banana passion fruit (P. tripartita var. Mollissima) is one of the most promising tropical fruits giving its antioxidant activity (AOA) to replace synthetic additives. Despite this property, there are no studies about the metabolites responsible for its biological function or proposals for the application of technologies, such as microencapsulation by spray drying, to improve its properties and ease its incorporation in several food matrices. The aim of this study is to microencapsulate the pulp of banana passion fruit with several mixtures of encapsulants and identify which one of these mixtures is better to preserve its AOA. The antioxidant activity values for the banana passion fruit pulp were as follows: DPPH: 6630.2 ± 91 μMtrolox/100g; ABTS: 18764.3 ± 270.4 μMtrolox/100g; FRAP: 1703.6± 938.2 mgAA/100g, ORAC: 8105.4 ± 424.2 μmol TEAC/100g of sample; Total phenols: 8862.2 ± 451.4 gallic ac. mg/100g. The concentrations of the bioactive compounds expressed in mg of gallic acid per 100 g of the pulp on a dry base were 13.9 ± 0.004; 5.9 ± 0.001 and 126.3 ± 0.004 for caffeic, p-coumaric and ferulic acids, respectively. The best shelf-life followed by ABTS in eight assays was between 28.8 and 31.5 weeks using maltodextrin and modified starch, MD:MS (1/4:3/4) and MD:MS (0:1), respectively. In conclusion, ABTS is the best method to measure the AOA in banana passion fruit because it correlated with the phenolic compounds better than DPPH and FRAP methods. Additionally, two options were found to protect the AOA and to extent the shelf-life of the passion fruit by spray-drying, with mixtures of encapsulants widely used in the food industry.

Share and Cite:

Gil, M. , Restrepo, A. , Millán, L. , Alzate, L. and Rojano, B. (2014) Microencapsulation of Banana Passion Fruit (Passiflora tripartita Var. Mollissima): A New Alternative as a Natural Additive as Antioxidant. Food and Nutrition Sciences, 5, 671-682. doi: 10.4236/fns.2014.58078.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Robards, K., Prenzler, P., Tucker, G. and Swatsitang, P. (1999) Phenolic Compounds and Their Role in Oxidative Processes in Fruits. Food Chemistry, 66, 401-436.
[2] Bisht, V., Negi, J., Bhandari, A. and Sundriyal, R. (2011) Anti-Cancerous Plants of Uttarakhand Himalaya. International Journal of Cancer, 7, 192-208.
[3] Hernández, A. and Bernal, R. (2000) Lista de Especies de Passifloraceae de Colombia. Biota Colombiana, 1, 320-335.
[4] Vasco, C., Ruales, J. and Kamal-Eldin, A. (2008) Total Phenolic Compounds and Antioxidant Capacities of Major Fruits from Ecuador. Food Chemistry, 111, 816-823.
[5] Contreras-Calderon, J., Calderón-Jaimes, L., Guerra-Hernández, E. and García-Villanova, B. (2011) Antioxidant Capacity, Phenolic Content and Vitamin C in Pulp, Peel and Seed from 24 Exotic Fruits from Colombia. Food Research International, 44, 2047-2053.
[6] Bush, R., Taylor, S. and Busse, W. (1986) A Critical Evaluation of Clinical Trials in Reactions to Sulfites. Journal of Allergy and Clinical Immunology, 78, 191-202.
[7] Botero, M., Ricaurte, S., Monsalve, C. and Rojano, B. (2007) Capacidad Reductora de 15 Frutas Tropicales. Scientia et Technica, 13, 295-296.
[8] Castellar, R., Obon, J., Alacid, M. and Fernández-López, J. (2003) Color Properties and Stability of Betacyanins from Opuntia Fruits. Journal of Agricultural and Food Chemistry, 51, 2772-2776. http://dx.doi.org/10.1021/jf021045h
[9] Desai, K. and Park, H. (2005) Recent Development in Microencapsulation of Foods Ingredients. Drying Technology, 23, 1361-1394. http://dx.doi.org/10.1081/DRT-200063478
[10] Ceballos, A. (2008) Estudio Comparativo de tres Sistemas de Secado para la Producción de un polvo Deshidratado de Fruta. Universidad Nacional de Colombia, Manizales.
[11] AOAC International (2007) Official Methods of Analysis of AOAC International. 18th Edition, AOAC Intl., Gaithersburg.
[12] Rojano, B., Saez, J., Schinella, G., Quijano, J., Vélez, E. and Gil, A. (2008) Experimental and Theoreticaldetermination of the Antioxidant Properties of Isoespintanol (2-ISOPROPYL-3,6-dimethoxy-5-methylphenol). Journal of Molecular Structure, 877, 1-6.
[13] Benzie, I. and Strain, J. (1996) The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power: The FRAP Assay”. Analytical Biochemistry, 239, 70-76.
[14] Ou, B., Hampsch-Woodill, M. and Prior, R. (2001) Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. Journal of Agricultural and Food Chemistry, 49, 4619-4626.
[15] Kelebek, H., Serkan, S., Ahmetm, C. and Turgut, C. (2009) HPLC Determination of Organic Acids, Sugars, Phenolic Compositions and Antioxidant Capacity of Orange Juice and Orange Wine Made from a Turkish cv. Kosan. Microchemical Journal, 91, 187-192.
[16] Cai, Y. and Corke, H. (2000) Production and Properties of Spray-Dried Maranthusbetacyanin Pigments. Journal of Food Science, 65, 1248-1252.
[17] Goldstein, J. (2003) Microscopía Electrónica de Barrido y Microanálisis de Rayos X. 689.
[18] Lewis, G., Mathieu, D. and Phan-Tan-Luu, R. (1999) Pharmaceutical Experimental Design. Marcel Dekker. Inc., New York, 448.
[19] Cornell, J. (2002) Experiments with Mixtures: Designs, Models, and the Analysis of Mixture. 3rd Edition, John Wiley & Sons, Inc., New York.
[20] Codex Alimentarius (2005) Norma General del Codex para Zumos, Jugos (Néctares) de Fruta.
[21] Saénz, C., Tapia, S., Chávez, J. and Robert, P. (2009) Microencapsulation by Spray Drying of Bioactive Compounds from Cactus pear (Opuntiaficus-Indica). Food Chemistry, 114, 616-622.
[22] Beserra-Almeida, M.M., Machado de Sousa, P.H., Campos Arriaga, A., Matias do Prado, G., Carvalho Magalhães, C., Arraes Maia, G. and Gomes de Lemos, T. (2011) Bioactive compounds and Antioxidant Activity of Fresh Exotic Fruits from Northeastern Brazil. Food Research International, 44, 2155-2159.
[23] Kukoski, E., Asuero, A., Troncoso, A., Mancini-Filho, J. and Fett, R. (2005) Aplicación de Diversos Métodos Químicos para Determinar Actividad Antioxidante en pulpa de Frutos. Ciência e Tecnologia de Alimentos, 25, 726-732.
[24] Marquina, V., Araujo, L., Ruíz, J., Rodríguez-Malaver, A. and Vit, P. (2008) Composición Química y Capacidad Antioxidante en fruta, pulpa y Mermelada de Guayaba (Psidiumguajava L.). Archivos Latinoamericanos de Nutrición, 58, 98-102.
[25] USDA (2013) Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods. Release 2.
[26] Strail, P., Klejdus, B. and Kubán, V. (2007) Determination of Phenolic Compounds and Their Antioxidant Activity in Fruits and Cereals. Talanta, 4, 1741-1751.
[27] Thaiponga, K., Boonprakoba, U., Crosbyb, K., Cisneros-Zevallosc, L. and HawkinsByrnec, D. (2006) Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. Journal of Food Composition and Analysis, 19, 669-675.
[28] Carboneau, M., Leger, C. and Monnier, L. (1997) Supplementation with Wine Phenolic Compounds Increases the Antioxidant Capacity of Plasma and Vitamin E of LDL. European Journal of Clinical Nutrition, 51, 682-690.
[29] Gutierres, A. (2002) Antioxidantes y Protección a la Salud. MEDISAN, 6, 72-81.
[30] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999) Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorizing Assay. Free Radical Biology & Medicine, 26, 1231-1237.
[31] Ersus, S. and Yurdagel, U. (2007) Microencapsulation of Anthocyanin Pigments of Black Carrot (Daucuscarota L.) by Spray Drier. Journal of Food Engineering, 80, 805-812.
[32] Osorio, C., Forero, D. and Carriazo, J. (2011) Characterisation and Performance Assessment of Guava (Psidiumguajava L.) Microencapsulates Obtained by Spray-Drying. Food Research International, 44, 1174-1181.
[33] Bakowska-Barczak, A.M. and Kolodziejczyk, P. (2011) Black Currant Polyphenols: Their Storage Stability and Microencapsulation. Industrial Crops and Products, 34, 1301-1309.
[34] Gil, M., Rojano, B., Restrepo, C. and Millán, L. (2010) Obtención de la Oleorresina de Páprika por medio de Tecnologías Emergentes en Colombia. Un Ejemplo de la Innovación de Producto. In: L. F. Garcés, Ed., Perspectivas y Avances de Investigación de la serie Lasallista Investigación y Ciencia, Artes y Letras S.A.S., Medellín, 417-449.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.