Chemical Attributes of a Typic Acrudox Soil on Marandu Palisade Grass under Rotational Stocking, Liming and Nitrogen Fertilisation

Abstract

Urochloa brizantha (synonymous of Brachiaria) is the most spread species of grass in the tropical world, primarily in regions with acid and low fertility soils. This study was conducted to investigate changes in the soil chemical properties of a Typical Acrudox submitted to a strategy of grazing with rotational stocking, liming and nitrogen fertilisation. Treatments involved combinations of two pre-grazing heights (25 and 35 cm) with two rates of nitrogen (50 and 200 kg·ha-1·year-1). All combinations received lime, P and K fertilization and an untreated control group was allocated according to a complete randomised block design, five replications. Soil sampling was done in layers of 0-5, 5-10, 10-20, 20-30 and 30-40 cm deep in pastures of U. brizantha Marandu (Palisade grass). The samples were analysed for pH, H+ + Al3+, soil organic matter (SOM), P, K+, Ca2+, Mg2+, exchangeable and calculated CEC, BS% and aluminium saturation. Liming and fertilisation improve the soil fertility. The highest organic matter contents were obtained for the 0-5 cm layer, with a nitrogen fertilisation of 200 kg·N·ha-1. The management practice for the pre-grazing height of 25 cm, regardless of the nitrogen, is the best strategy for soil quality and livestock production.

Share and Cite:

Paulino, V. , Teixeira, E. , Duarte, K. and Lucena, M. (2014) Chemical Attributes of a Typic Acrudox Soil on Marandu Palisade Grass under Rotational Stocking, Liming and Nitrogen Fertilisation. American Journal of Plant Sciences, 5, 1039-1048. doi: 10.4236/ajps.2014.57116.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Instituto Brasileiro de Geografia e Estatística (2013). http://www.ibge.gov.br
[2] Scott, D. (2000) Fertilizer and Grazing Rejuvenation of Fescue Tussock Grassland. New Zealand Journal Agricultural Research, 43, 481-490. http://dx.doi.org/10.1080/00288233.2000.9513444
[3] Peters, M., Franco, L.H., Schmidt, A. and Hincapié, B. (2001) Especies forrajeras multiproposito: Opciones para productores de Centroamérica. CIAT Publication, Cali.
[4] Alexandrino, E., Nascimento Jr., D., Mosquim, P.R., Regazzi, A.J. and Rocha, F.C. (2004) Características morfogênicas e estruturais na rebrotação da Brachiaria brizantha cv. Marandu submetida a três doses de nitrogênio. Revista Brasileira de Zootecnia, 33, 1372-1379.
[5] Cadish, G., Schunke, R.M. and Giller, K.E. (1994) Nitrogen Cycling in a Pure Grass Pasture and a Grass-Legume Misture on a Red Latosol in Brazil. Tropical Grasslands, 28, 43-52.
[6] Oliveira, P.P.A., Trivelin, P.C.O., Oliveira, W.S. and Corsi, M. (2005) Fertilização com N e S na recuperação de pastagem de Brachiaria brizantha cv. Marandu em Neossolo Quartzarênico. Revista Brasileira de Zootecnia, 34, 1121-1129. http://dx.doi.org/10.1590/S1516-35982005000400005
[7] Sibbald, A.R., Marriot, C.A., Agnew, R.D.M. and Dalziel, A.J.I. (2004) The Implications of Controlling Grazing Swards Height for the Operation and Productivity of Upland Sheep Systems in UK: 7. Sustainability of White Clover in Grass/Clover Swards with Reduced Levels of Fertilizer Nitrogen. Grass and Forage Science, 59, 264-273.
http://dx.doi.org/10.1111/j.1365-2494.2004.00426.x
[8] Haynes, R.J. and Williamas, P.H. (1993) Nutrient Cycling and Soil Fertility in the Grazed Pasture Ecosystem. Advances in Agronomy, 49, 119-199. http://dx.doi.org/10.1016/S0065-2113(08)60794-4
[9] Costa, D.F.A. (2007) Respostas de bovinos de corte à suplementação energética em pastos de capim-marandu submetidos a intensidades de pastejo rotativo durante o verão. Dissertação (Mestrado em Ciência Animal e Pastagens) —Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, 98p.
[10] Werner, J.C., Paulino, V.T., Cantarella, H., Andrade, N.O. and Quaggio, J.A. (1996) Forrageiras. In: Van Raij, B., Cantarella, H., Quaggio, J.A. and Furlani, A.M.C., Eds., Recomendações de adubação e calagem para o Estado de São Paulo, 2nd Edition, Instituto Agronomico, Campinas, 263-273.
[11] Gimenes, F.M.A., Da Silva, S.C., Fialho, C.A., Gomes, M.B., Berndt, A., Gerdes, L. and Colozza, M.T. (2011) Ganho de peso e produtividade animal em capim-marandu sob pastejo rotativo e adubação nitrogenada. Pesquisa Agropecuária Brasileira, 46, 751-759. http://dx.doi.org/10.1590/S0100-204X2012000600006
[12] Tan, K.H. and Dowling, P.S. (1984) Effect of Organic Matter on CEC Due to Permanent and Variable Changes in Selected Temperate Region Soils. Geoderma, 32, 89-101. http://dx.doi.org/10.1016/0016-7061(84)90065-X
[13] Barthram, G.T. (1985) Experimental Techniques: The HFRO Sward Stick. In: The Hill Farming Research Organization. Biennial Report, HFRO, Midlothian, 29-30.
[14] Van Raij, B., Andrade, J.C., Cantarella, H. and Quaggio, J.A. (2001) Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico, Campinas, 285p.
[15] Nelson, D.W. and Sommers, L.E. (1996) Total Carbon, Organic Carbon, and Organic Matter. In: Black, C.A., Ed., Methods of Soil Analysis. Part 3. Chemical Methods, Soil Science of America and American Society of Agronomy, Madison, 961-1010.
[16] Embrapa (1997) Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 2nd Edition, Embrapa, Rio de Janeiro, 212p.
[17] Van Raij, B., Quaggio, J.A., Cantarella, H., Ferreira, M.E. and Lopes, A.S. (1987) Análise química do solo para fins de fertilidade. Fundação Cargill, Campinas, 170p.
[18] Muzzilli, O. (1983) Influencia do sistema de plantio direto, comparado ao convencional, sobre a fertilidade da camada arável do solo. Revista Brasileira de Ciência do Solo, 7, 95-102.
[19] Franchini, E.J.C., Malavolta, E., Miyzawa, M. and Pavan, M.A. (1999) Alterações químicas em solos ácidos de resíduos vegetais. Revista Brasileira de Ciência do Solo, 23, 533-542.
[20] Pavan, M.A. (1983) Alumínio em solos ácidos do Paraná: relação entre alumínio não-trocável, trocável e solúvel, com o pH, CTC, porcentagem de saturação de Al e matéria organica. Revista Brasileira de Ciência do Solo, 7, 39-46.
[21] Abreu Jr., C.H., Muraoka, T. and Lavorante, A.F. (2003) Lavorante Exchangeable aluminium evaluation in acid soils. Scientia Agrícola, 60, 543-548.
[22] Rao, I.M., Miles, J.W. and Ricaurte, J. (2006) Seleccion de híbridos de Brachiaria com resistência al alumínio. Pasturas Tropicales, 28, 20-25.
[23] Oliveira, G.C., Dias Jr., M.S., Resck, D.V.S. and Curi, N. (2004) Caracterização química e física-hídrica de um Latossolo Vermelho após vinte anos de manejo e cultivo do solo. Revista Brasileira de Ciência do Solo, 28, 327-336.
http://dx.doi.org/10.1590/S0100-06832004000200011
[24] Kemper, W.D. and Koch, E.J. (1966) Aggregate Stability of Soils from Western United States and Canada. USDA Technical Bulletin, Washington DC.
[25] Greenland, D.J., Rimmer, D. and Payne, D. (1975) Determination of the Structural Stability Class of English and Welsh Soils, Using a Water Coherence Test. Journal of Soil Science, 26, 294-303.
http://dx.doi.org/10.1111/j.1365-2389.1975.tb01953.x
[26] Six, J., Feller, C., Denef, K., Ogle, S.M., Sá, J.C.M. and Albrecht, A. (2002) Soil Organic Matter, Biota and Aggregation in Temperate and Tropical Soils: Effects of No-Tillage. Agronomie, 22, 755-775.
http://dx.doi.org/10.1051/agro:2002043
[27] Paul, E.A. and Clark, F.E. (1989) Soil Microbiology and Biochemistry. Academic Press, San Diego, 272p.
[28] Siqueira Neto, M., Scopel, E., Corbeels, M., Cardoso, A.N., Douzet, J.M., Feller, C., Piccolo, M.C., Cerri, C.C. and Bernoux, M. (2010) Soil Carbon Stocks under No-Tillage Mulch-Based Cropping Systems in the Brazilian Cerrado: An On-Farm Synchronic Assessment. Soil Tillage Research, 110, 187-195.
http://www.sciencedirect.com/science/article/pii/S0167198710001352
[29] Trindade, J.K., Da Silva, S.C., Souza Jr., S.J., Giacomini, A.A., Zeferino, C.V., Guarda, V.D. and Carvalho, P.C.F. (2007) Composição morfológica da forragem consumida por bovinos de corte durante o rebaixamento do capimmarandu submetido a estratégias de pastejo rotativo. Pesquisa Agropecuária Brasileira, 42, 883-890.
http://dx.doi.org/10.1590/S0100-204X2007000600016
[30] Conant, R.T., Paustin, K. and Elliot, E.T. (2001) Grassland Management and Conversion into Grassland: Effects on Soil Carbon. Ecological Applications, 11, 343-355.
http://dx.doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
[31] Soussana, J.F., Tallec, T. and Blanfort, V. (2010) Mitigating the Greenhouse Gas Balance of Ruminant Production Systems through Carbon Sequestration in Grassland. Animal, 4, 334-350.
http://dx.doi.org/10.1017/S1751731109990784
[32] Loveland, P. and Webb, J. (2003) Is There Critical Level of Organic Matter in the Agricultural Soils of Temperate Regions: Review. Soil Tillage Research, 70, 1-18. http://dx.doi.org/10.1016/S0167-1987(02)00139-3
[33] Tan, K.H. and Dowling, P.S. (1984) Effect of Organic Matter on CEC Due to Permanent and Variable Changes in Selected Temperate Region Soils. Geoderma, 32, 89-101. http://dx.doi.org/10.1016/0016-7061(84)90065-X
[34] Viani, R.A.G., Rodrigues, R.R., Dawson, E.T. and Oliveira, R.S. (2011) Savanna Soil Fertility Limits Growth But Not Survival of Tropical Forest Tree Seedlings. Plant and Soil, 349, 341-353.
http://link.springer.com/article/10.1007%2Fs11104-011-0879-7
[35] Falleiro, R.M., Souza, C.M., Silva, C.S.W., Sediyama, C.S., Silva, A.A. and Fagundes, J.L. (2003) Influência dos sistemas de preparo nas propriedades químicas e físicas do solo. Revista Brasileira Ciência do Solo, 27, 1097-1104.
[36] Addiscot, T.M. and Thomas, D. (2000) Tillage, Mineralization and Leaching: Phosphate. Soil Tillage Research, 53, 255-273. http://dx.doi.org/10.1016/S0167-1987(99)00110-5

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.