Microwave Sintering of Zn-Nb Doped Barium Hexaferrite Synthesized via Sol-Gel Method


A series of polycrystalline M-type hexagonal ferrites with the formula BaFe12-2xZnx NbxO19 (x = 0.2, 0.4, 0.6, 0.8 mol%) have been synthesized by the sol-gel method. The composition and microstructure govern the magnetic properties of ferrites. The XRD analysis shows the formation of pure magneto plumbite phase without any other impurity phases. The Zn-Nb substitutions in barium hexaferrite have been confirmed through magnetic measurements. The results show that the magnetic properties are closely related to the distributions of Zn-Nb ions on the five crystallographic sites. The saturation magnetization and coercivity increase with increasing Zn-Nb concentration.

Share and Cite:

Kanagesan, S. , Hashim, M. , Jesurani, S. , Kalaivani, T. and Ismail, I. (2014) Microwave Sintering of Zn-Nb Doped Barium Hexaferrite Synthesized via Sol-Gel Method. Materials Sciences and Applications, 5, 171-176. doi: 10.4236/msa.2014.54021.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Kojima, H. (1982) Fundamental Properties of Hexagonal Ferrites. In: Wohlfahrt, E.P., Ed., Ferromagnetic Materials, North-Holland, Amsterdam.
[2] Liu, X., Wang, J., Gan, L.M., Ng, S.C. and Ding, J. (1998) An Ultrafine Barium Ferrite Powder of High Coercivity from Water-in-Oil Microemulsion. Journal of Magnetism and Magnetic Materials, 184, 344-354.
[3] An, S.Y., Shim, I.B. and Kim, C.S. (2002) Mossbauer and Magnetic Properties of Co-Ti Substituted Barium Hexaferrite Nanoparticles. Journal of Applied Physics, 91, 8465-8468. http://dx.doi.org/10.1063/1.1452203
[4] Zhou, X.Z., Morrish, A.H., Yang, Z. and Zeng, H.-X. (1994) Co-Sn Substituted Barium Ferrite Particles. Journal of Applied Physics, 75, 5556-5558. http://dx.doi.org/10.1063/1.355687
[5] Han, D.H., Yang, Z., Zeng, H.X., Zhou, X.Z. and Morrish, A.H. (1994) Cation Site Preference and Magnetic Properties of Co-Sn-Substituted Ba Ferrite Particles. Journal of Magnetism and Magnetic Materials, 137, 191-196.
[6] Li, Z.W., Ong, C.K., Yang, Z., Zhou, X.Z., Zhao, J.H. and Morrish, A.H. (2000) Site Preference and Magnetic Properties of Perpendicular Recording Material, BaFe12-x,Znx/2Zrx/2O19 Nanoparticles. Physical Review B, 62, 6530-6537.
[7] Mendoza-Suarez, G., Corral-Huacuz, J.C., Contreras-Garcia, M.E. and Juarez-Medina, H. (2001) Magnetic Properties of BaFe11.6-2xCoxTixO19 Particles Produced by Sol-Gel and Spray-Drying. Journal of Magnetism and Magnetic Materials, 234, 73-79. http://dx.doi.org/10.1016/S0304-8853(01)00286-4
[8] Wartewig, P., Krause, M.K., Esquinazi, P., Rosler, S. and Sonntag, R. (1999) Magnetic Properties of Znand Ti-Substituted Barium Hexaferrite. Journal of Magnetism and Magnetic Materials, 192, 83-99.
[9] Turilli, G., Licci, F., Paoluzi, A. and Besagni, T. (1998) NiTi Substituted Hexaferrites for Magnetic Recording. IEEE Transactions on Magnetics, 24, 2146-2149. http://dx.doi.org/10.1109/20.3418
[10] Fang, Q.Q., Bao, H.W., Fang, D.M., Wang, J.Z. and Li, X.G. (2004) The Effect of Zn-Nb Substitution on Magnetic Properties of Strontium Hexaferrite Nanoparticles. Journal of Magnetism and Magnetic Materials, 278, 122-126.
[11] Menezes, R.R. and Akiminami, R.H.G. (2008) Microwave Sintering of Alumina-Zirconia, Nanocomposites. Journal of Materials Processing Technology, 203, 513-519. http://dx.doi.org/10.1016/j.jmatprotec.2007.10.057
[12] Fang, Y., Roy, R., Agrawal, D.K. and Roy, D.M. (1996) Transparent Mullite Ceramics from Diphasic Aerogels by Microwave and Conventional Processings. Materials Letters, 28, 11-15.
[13] Ravi, B.G., Praveent, V. and Panneer, A. (1998) Microwave-Assisted Preparation and Sintering of Mullite-Zirconia Composites from Metal Organics. Materials Research Bulletin, 33, 1527-1536.
[14] Piluso, P., Gaillard, L. and Lequeux, N. (1996) Mullitization and Densification of (3Al2O3 + 2SiO2) Powder Compacts by Microwave Sintering. Journal of the European Ceramic Society, 16, 121-125.
[15] Vijayalaksmi, A. and Gajbhiye, N.S. (1998) Magnetic Properties of Single Domain SrFe12O19 Fine Particles Synthesized by Citrate Precursor Technique. Journal of Applied Physics, 83, 400-407. http://dx.doi.org/10.1063/1.366654
[16] Litsardakis, G., Manolakis, I., Stergiou, A.C., Serletis, C. and Efthimiadis, K.G. (2008) New Dy-Substituted Ba Hexaferrites with Enhanced Coercivity. IEEE Transactions on Magnetics, 44, 4222-4224.
[17] Kubo, O. and Ogawa, E. (1994) Barium Ferrite Particles for High Density Magnetic Recording. Journal of Magnetism and Magnetic Materials, 134, 376-381. http://dx.doi.org/10.1016/0304-8853(94)00147-2
[18] Bai, J., Liu, X., Xie, T., Wei, F. and Yang, Z. (2000) The Effects of La-Zn Substitution on the Magnetic Properties of Sr-Magnetoplumbite Ferrite Nano-Particles. Materials Science and Engineering: B, 68, 182-185.
[19] Kubo, O. and Ogawa, E. (1991) Cation Distribution and Intrinsic Magnetic Properties of Co-Ti-Doped M-Type Barium Ferrite. Journal of Applied Physics, 70, 1614-1623.
[20] Parker, R.J. (1980) Ferrite. Proceedings of the ICF-3, 375.
[21] Lisjak, D. and Drofenik, M. (2004) Synthesis and Characterisation of A-Sn-Substituted (A=Zn,Ni,Co) BaM-Hexaferrite Powders and Ceramics. Journal of the European Ceramic Society, 24, 1841-1845.
[22] Singh, C., Bindra-Narang, S., Hudiara, I.S. and Bai, Y. (2008) The Effect of Co and Zr Substitution on dc Magnetic Properties of Ba-Sr Ferrite. Journal of Alloys and Compounds, 464, 429-433.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.