Biogeochemical Dynamics of Molybdenum in a Crater Lake: Seasonal Impact and Long-Term Removal
Alassane Thiam, Didier Jézéquel, Alexis Groleau, François Prévot, Filipa Lopes, Patrick Albéric, Catherine Quiblier, Elivira Bura-Nakic, Irena Ciglenečki, Hassiba Lazar, Eric Viollier
1Université de Thiès, UFR Sciences de l’Ingénieur, Thiès, Sénégal 2Laboratoire de Géochimie des Eaux, Université Paris Diderot-Institut de Physique du Globe de Paris, Paris, France.
Laboratoire de Géochimie des Eaux, Université Paris Diderot-Institut de Physique du Globe de Paris, Paris, France.
Laboratoires Génie des Procédés et Matériaux, Ecole de Chimie de Paris, Chatenay-Malabry, France.
Muséum National d’Histoire Naturelle, Equipe “Systématique et Ecotoxicologie des Micro-Algues”, Paris, France.
Rudjer Boskovic Institute, Center for Marine and Environmental Research, Zagreb, Croatia.
UMR611-CNRS/Université d’Orléans, Orléans, France.
DOI: 10.4236/jwarp.2014.64031   PDF    HTML     4,622 Downloads   6,286 Views   Citations


Despite a large variety of processes that can control Mo and its potential to become an environmental tracer of euxinic environment, this element is not often studied in lakes. The aim of this paper is to identify main seasonal biogeochemical processes that involve Mo in a well constrained freshwater system (Lake Pavin water-column) in order to evaluate their respective importance. In Lake Pavin, 4 main processes have been identified: 1) the transitional process represented by Mo assimilation of by phytoplankton in the epilimnion (nitrogen biological fixation and nitrate assimilation); 2) transient process represented by dissolved Mo adsorption onto Fe and Mn metal oxides at oxic/anoxic interface (depth 50 - 60 m); 3) Mo precipitation where apparent sulfide production rate is maximum, and from 80 m depths; 4) release of dissolved Mo due to Mo benthic flux or input from a deep source.

Share and Cite:

Thiam, A. , Jézéquel, D. , Groleau, A. , Prévot, F. , Lopes, F. , Albéric, P. , Quiblier, C. , Bura-Nakic, E. , Ciglenečki, I. , Lazar, H. and Viollier, E. (2014) Biogeochemical Dynamics of Molybdenum in a Crater Lake: Seasonal Impact and Long-Term Removal. Journal of Water Resource and Protection, 6, 256-271. doi: 10.4236/jwarp.2014.64031.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Stiefel, E.-I. (1997) Chemical Keys to Molybdenum Enzymes. Journal of the Chemical Society, No. 21, 3915-3923.
[2] Williams, R.-J.P. and Frausto da Silva, J.-J.R. (2002) The Involvement of Molybdenum in Life. Biochemical and Biophysical Research Communications, 292, 293-299.
[3] Zheng, Y., Anderson, R.-F., van Geen, A. and Kuwabara, J. (2000) Authigenic Molybdenum Formation in Marine Sediments: A Link to Pore Water Sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64, 4165-4178.
[4] Vorlicek, T.-P., Kahn, M.-D., Kasuya, Y. and Helz, G.-R. (2004) Capture of Molybdenum in Pyrite-Forming Sediments: Role of Ligand-Induced Reduction by Polysulfides. Geochimica et Cosmochimica Acta, 68, 547-556.
[5] Ciglenecki, I., Pichler, S., Prohic, E. and Cosovic, B. (2006) Distribution of Redox-Sensitive Elements in Bottom Waters, Porewaters and Sediments of Rogoznica Lake (Croatia) in both Oxic and Anoxic Conditions. Water, Air, & Soil Pollution: Focus, 6, 537-545.
[6] Poulson, R., Siebert, C., McManus, J. and Berelson, W.M. (2006) Antigenic Molybdenum Isotope Signatures in Marine Sediments. Geology, 34, 56-59.
[7] Tribovillard, N., Lyons, T., Riboulleau, A. and Bout-Roumazeilles, V. (2008) A Possible Capture of Molybdenum during Early Diagenesis of Dysoxic Sediments. Bulletin de la Société Géologique de France, 179, 3-12.
[8] Magyar, B., Moor, H.C. and Sigg, L. (1993) Vertical Distribution and Transport of Molybdenum in a Lake with a Seasonally Anoxic Hypolimnion. Limnology and Oceanography, 38, 521-531.
[9] Howarth, R.W. and Cole, J.J. (1985) Molybdenum Availability, Nitrogen Limitation, and Phytoplankton Growth in Natural Waters. Science, 229, 653-655.
[10] Howarth, R.W., Marino, R., Lane, J. and Cole, D.R. (1988) Nitrogen Fixation in Freshwater, Estuarine and Marine Ecosystems. 1. Rates and Importance. Limnology and Oceanography, 33, 669-687.
[11] Howarth, R.W. (1988) Nutrient Limitation of Net Primary Production in Marine Ecosystems. Annual Review of Ecology and Systematics, 19, 89-110.
[12] Marino, R., Howarth, R.-W., Shamess, J. and Prepas, E. (1990) Molybdenum and Sulfate as Controls on the Abundance of Nitrogen-Fixing Cyanobacteria in Saline Lakes in Alberta. Limnology and Oceanography, 35, 245-259.
[13] Paulsen, D.-M., Paerl, H.-W. and Bishop, P.-E. (1991) Evidence That Molybdenum Dependent Nitrogen Fixation Is Not Limited by High Concentrations of Sulfate in Marine Environments. Limnology and Oceanography, 36, 1325-1334.
[14] Cole, J.-J., Lane, J., Marino, R. and Howarth, R.W. (1993) Molybdenum Assimilation by Cyanobacteria and Phytoplankton in Freshwater and Salt Water. Limnology and Oceanography, 38, 25-35.
[15] Tuit, C., Waterbury, J. and Ravizza, G. (2004) Diel Variation of Molybdenum and Iron in Marine Diazotrophic Cyanobacteria. Limnology and Oceanography, 49, 978-990.
[16] Morris, A.W. (1975) Dissolved Molybdenum and Vanadium in the Northeast Atlantic Ocean, Deep-Sea. Deep-Sea Research and Oceanographic Abstracts, 22, 49-54.
[17] Collier, R.-W. (1985) Molybdenum in the Northeast Pacific. Ocean. Limnology and Oceanography, 30, 1351-1354.
[18] Brewer, P.G. (1975) Minor Elements in Seawater. In: Riley, J.P., Ed., Chemical Oceanography, Academic Press, Waltham, 415-496.
[19] Calvert and Pedersen (1993) Geochemistry of Recent Oxic and Anoxic Sediments: Implications for the Geological Record. Marine Geology, 113, 67-88.
[20] Emerson, S.-R. and Huested, S.-S. (1991) Ocean Anoxia and the Concentrations of Molybdenum and Vanadium in Seawater. Marine Chemistry, 34, 177-196.
[21] Colodner, D., Edmond, J. and Boyle, E. (1995) Rhenium in the Black Sea: Comparison with Molybdenum and Uranium. Earth Planetary Sciences Letters, 131, 1-15.
[22] Bertine, K.K. and Turekian, K.K. (1973) Molybdenum in Marine Sediments. Geochimica et Cosmochimica Acta, 37, 1415-1434.
[23] Brumsack, H.-J. and Gieskes, J. (1983) Interstitial Water Trace-Metal Chemistry of Laminated Sediments form the Gulf of California, Mexico. Marine Chemistry, 14, 89-106.
[24] Brumsack, H.-J. (1986) The Inorganic Geochemistry of Cretaceous Black Shales (DSDP Leg 41) in Comparison to Modern Upwelling Sediments from the Gulf of California. In: Summerhayes, C.P. and Shackleton, N.J., Eds., North Atlantic Palaeoceanography, Special Publications, Geological Society London, 21, 447-462.
[25] Piper, D.-Z. and Isaacs, C.-M. (1995) Minor Elements in Quaternary Sediment from the Sea of Japan: A Record of Surface-Water Productivity and Intermediate-Water Redox Conditions. Geology. Society. America Bulletin, 107, 54-67.
[26] Crusius, S., Calvert, T., Pedersen, T. and Sage, D. (1996) Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic, and Sulfidic Conditions of Deposition. Earth Planetary Sciences Letters, 145, 65-78.
[27] Helz, G.-R., Miller, C.-V., Mosselmans, J.M.W., Patrick, R.-A.D., Garner, C.-D. and Vaughan, D.-J. (1996) Mechanisms of Molybdenum Removal from the Sea and Its Concentration in Black Shale: EXAFS Evidence. Geochimica et Cosmochimica Acta, 60, 3631-3642.
[28] Nameroff, T. (1996) The Geochemistry of Redox-Sensitive Metals in Sediments of the Oxygen Minimum off Mexico. Ph.D. Thesis, University of Washington, Seattle.
[29] Morford, J.-L. (1999) The Geochemistry of Redox-Sensitive Trace Elements. Ph.D. Thesis, University of Washington, Seattle.
[30] Morford, J. and Emerson, S. (1999) The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta, 63, 1735-1750.
[31] Siebert, C., Nagler, T.F., von Blanckenburg, F. and Kramers, J.D. (2003) Molybdenum Isotope Records as a Potential New Proxy for Paleoceanography. Earth and Planetary Science Letters, 211, 159-171.
[32] Anbar, A.D. (2004) Molybdenum Stable Isotopes: Observations, Interpretations and Directions. In: Geochemistry of Non-Traditionnal Stable Isotopes, Vol. 55, Mineralogical Society of America and Geochemical Society, Washington, 429-454.
[33] Kolodkin-Gal, I., Hazan, R., Gaathon, A., Carmeli, S. and Engelberg-Kulka, H. (2007) A Linear Pentapeptide Is a Quorum-Sensing Factor Required for mazEF-Mediated Cell Death in Escherichia coli. Science, 318, 652-655.
[34] Kroneck, P.M.H. and Abt, D.J. (2002) Molybdenum in Nitrate Reductase and Nitrate Oxidoreductase. In: Sigel, H. and Sigel, A., Eds., Metal Ions in Biological Systems, Marcel Dekker Inc., New York, 369-403.
[35] Barling, J. and Anbar, A.D. (2004) Molybdenum Isotope Fractionation during Adsorption by Manganese Oxides. Earth and Planetary Sciences Letters, 217, 315-329.
[36] Adelson, J.M., Helz, G.R. and Miller, C.V. (2001) Reconstructing the Rise of Recent Coastal Anoxia, Molybdenum in Chesapeake Bay Sediments. Geochimica et Cosmochimica Acta, 65, 237-252.
[37] Elbaz-Poulichet, F., Seidel, J.L., Jézéquel, D., Metzger, E., Prévot, F., Simonucci, C., Sarazin, G., Viollier, E., Etcheber, H., Jouanneau, J.M., Weber, O. and Radakovitch, O. (2004) Sedimentary Record of Redox-Sensitive Elements (U, Mn, Mo) in a Transitory Anoxic Basin (the Thau lagoon, France). Marine Chemistry, 95, 271-281.
[38] Albéric, P., Viollier, E., Jezequel, D., Grosbois, C. and Michard, G. (2000) Interactions between Trace Elements and Dissolved Organic Matter in the Stagnant Anoxic Deep Layer of a Meromictic Lake. Limnology and Oceanography, 45, 1088-1096.
[39] Kawakubo, S., Hashi, S. and Iwatsuki, S. (2001) Physicochemical Speciation of Molybdenum in Rain Water. Water Research, 35, 2489-2495.
[40] Korolev, D.F. (1958) The Role of Iron Sulfides in the Accumulation of Molybdenum in Sedimentary Rocks of the Reduced Zone. Geochemistry, 4, 452-463.
[41] Tribovillard, N., Riboulleau, A., Lyons, T. and Baudin, F. (2004) Enhanced Trapping of Molybdenum by Sulfurized Marine Organic Matter of Marine Origin in Mesozoic Limestones and Shales. Chemical Geology, 213, 385-401.
[42] Helz, G.R., Bura-Nakic, E., Mikac, N. and Ciglenecki, I. (2011) New Model for Molybdenum Behavior in Euxinic Waters. Chemical Geology, 284, 323-332.
[43] Olivier, L. (1952) Sur la présence en été, dans le Lac Pavin, d’une couche dépourvue d’oxygène, vers 70 m de profondeur. Comptes Rendus de l'Académie des Sciences Paris, 234, 743-745.
[44] Alvenerie, J., Dégot, B., Lévèque, P. and Vigneaux, M. (1966) Activité en tritium et caractéristiques chimiques des eaux du Lac Pavin. Comptes Rendus de l’Académie des Sciences, 262, 846-849.
[45] Omaly, N. (1968) Le lac Pavin: Historique et Hydrobiologie. Revue des Sciences Naturelles d'Auvergne, 34, 7-30.
[46] Pelletier, J.P. (1968) Un lac méromictique, le Pavin (Auvergne)/A Meromictic Lake Lake Pavin (Auvergne). Annales de la Station Biologique de Besse-en-Chandesse, (3), 147-170.
[47] Meybeck, M., Martin, J.M. and Olive, P. (1975) Géochimie des eaux et des sédiments de quelques lacs volcaniques du Massif Central francais. Verhandlungen Internationalen Vereinigung Limnologie, 19, 1150-1164.
[48] Devaux, J., Lair, N. and Amblard, C. (1983) Un écosystème lacustre profond: Le Lac Pavin. In: Masson, Ed., Problèmes d’écologie: écosystèmes Limniques, M. Lamotte et F. Bourlière, 1-49.
[49] Amblard, C. and Restituito, F. (1983) Observations complémentaires en faveur de l’origine biogénique de la couche à hydrogène sulfuré d’un Lac de moyenne montagne (Lac Pavin, France). Comptes Rendus de l'Académie des Sciences Paris, 296, 1787-1790.
[50] Restituito, F.V. (1984) Study of a Layer Containing Hydrogen Sulfide in a Meromictic Lake Pavin, France. Hydrobiologia, 109, 235-242.
[51] Restituito, F.V. (1987) Consequences of Redox Conditions on the Distribution of Cations in a Meromictic Oligotrophic Lake. Hydrobiologia, 144, 63-75.
[52] Martin, J.M. (1985) The Pavin Crater Lake. In: Stumm, W., Ed., Chemical Processes in Lakes, John Wiley & Sons Publishing, London, 169-188.
[53] Martin, J.M., Meybeck, M., Nijampurka, V.N. and Somayajulu, B.L.K. (1992) 210Pb, 226Ra and 32Si in Lac Pavin (Massif Central, France). Chemical Geology, 94, 173-181.
[54] Camus, G., Michard, G., Olive, P., Boivin, P., Desgranges, P., Jézéquel, D., Meybeck, M., Peyrus, J.C., Vinson, J.M., Viollier, E. and Kornprosbt, J. (1993) Risques d'éruption gazeuse carbonique en Auvergne. Bulletin Société Géologique de France, 164, 767-781.
[55] Cossa, D., Mason, R.P. and Fitzgerald, W.F. (1994) Chemical Speciation of Mercury in a Meromictic Lake. In: Watras, C.J., Ed., Mercury Pollution, Lewis Publishers-CRC Press, Boca Raton, 57-67. .
[56] Michard, G., Viollier, E., Jézéquel, D. and Sarazin, G. (1994) Geochemical Study of a Crater Lake: Lac Pavin, France— Identification, Location and Quantification of the Chemical Reactions in the Lake. Chemical Geology, 115, 103-115.
[57] Michard, G., Jézéquel, D. and Viollier, E. (2003) Vitesses des réactions de dissolution et précipitation au voisinage de l’interface oxydo-réducteur dans un lac méromictique: Le Lac Pavin (Puy-de-Dome, France). Revue des Sciences de l’Eau, 16, 199-218.
[58] Schmid, M. (1997) Physikalische and Chemische Prozesse in Lacbbv. Physikalische und chemische prozesse im lac Pavin: ursachen und folgen der satbilen schichtung eines vulkanishen kratersees. Diploma Thesis ETH Zürich, Suisse, 93 p.
[59] Viollier, E. (1995) Géochimie des éléments traces en milieu lacustre. Ph.D Thesis. Université Paris, Paris, 7.
[60] Viollier, E., Alberic, P., Jézéquel, D., Michard, G., Pepe, M. and Sarazin, G. (1995) Geochemical Study of a Crater Lake (Lake Pavin, France): Trace Element Behaviour in the Monimolimnion. Chemical Geology, 125, 61-72.
[61] Viollier, E., Michard, G., Jézéquel, D., Pepe, M. and Sarazin, G. (1997) Geochemical Study of a Crater Lake: Lake Pavin, Puy de Dome, France. Constraints Afforded by the Particulate Matter Distribution in the Element Cycling within the Lake. Chemical Geology, 142, 225-241.
[62] Aeschbach-Hertig, W., Hofer, M., Kipfer, R., Imboden, D.M. and Wieler, R. (1999) Accumulation of Mantle Gases in a Permanently Stratified Volcanic Lake (Lac Pavin, France). Geochimica et Cosmochimica Acta, 63, 3357-3372.
[63] Aeschbach-Hertig, W., Hofer, M., Schmid, M., Kipper, R. and Imboden, D.M. (2002) The Physical Structure and Dynamics of a Deep, Meromictic Crater Lake (Lac Pavin, France). Hydrobiologia, 487, 111-136.
[64] Olive, P. and Boulègue, J. (2004) Etude biogéochimique d’un lac méromictique: Le Lac Pavin, France. Géomorphologie: Relief, Processus, Environnement, 10, 305-316.
[65] Lehours, A.C., Bardot, C., Thenot, A., Debroas, D. and Fonty, G. (2005) Anaerobic Microbial Communities in Lake Pavin, a Unique Meromictic Lake in France. Applied and Environmental Microbiology, 71, 7389-7400.
[66] Lehours, A.C., Evans, P., Bardot, C., Joblin, K. and Fonty, G. (2007) Phylogenetic Diversity of Archae and Bacteria in the Anoxic Zone of a Meromictic Lake (Lake Pavin, France). Applied and Environmental Microbiology, 73, 2016-2019.
[67] Schettler, G., Schwab, M.J. and Stebich, M. (2007) A 700 Years Record of Climate Change Based on Geochemical and Palynological Data from Varved Sediments (Lac Pavin, French Massif Central). Chemical Geology, 240, 11-35.
[68] Bura-Nakic, E., Viollier, E., Jézéquel, D., Thiam, A. and Ciglenecki, I. (2009) Reduced Sulfur and Iron Species in Anoxic Water Column of Meromictic Crater Lake Pavin (Massif Central, France). Chemical Geology, 266, 320-326.
[69] Bura-Nakic, E., Viollier, E. and Ciglenecki, I. (2013) Electrochemical and Colorimetric Measurements Show the Dominant Role of FeS in a Permanently Anoxic Lake. Environmental Sciences & Technology, 47, 741-749.
[70] Lopes, F., Viollier, E., Thiam, A., Michard, G., Abril, G., Groleau, A., Prévot, F., Carrias, J.F., Albéric, P. and Jézéquel, D. (2011) Biogeochemical Modelling of Anaerobic vs. Aerobic Methane Oxidation in a Meromictic Crater Lake (Lake Pavin, France). Applied Geochemistry, 26, 1919-1932.
[71] Assayag, N., Jézéquel, D., Ader, M., Viollier, E., Michard, G., Prévot, F. and Agrinier, P. (2008) Hydrological Budget, Carbon Sources and Biogeochemical Processes in Lac Pavin (France): Constraints from δ18O of Water and δ13C of Dissolved Inorganic Carbon. Applied Geochemistry, 23, 2800-2816.
[72] Mignot, J.P. and Brugerolle, G. (1982) Scale Formation in Chrysomonad Flagellates. Journal of Ultrastructure Research, 81, 13-26.
[73] Schecher, W.-D. and McAvoy, D.C. (1992) Equilibrium Calculation Software.
[74] Erickson, B.E. and Helz, G.R. (2000) Molybdenum (VI) Speciation in Sulfidic Waters: Stability and Lability of Thiomolybdates. Geochimica et Cosmochimica Acta, 64, 1149-1158.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.