[1]
|
Yang, C.N. and Mills, R.L. (1954) Physical Review Letters, 96, 191-195. http://dx.doi.org/10.1103/PhysRev.96.191
|
[2]
|
Kobayashi, S. and Nomizu, K. (1963) Foundations of Differential Geometry, Vol. I. J. Wiley, New York.
|
[3]
|
Bleecker, D. (1981) Gauge Theory and Variational Principles. Addison-Wesley, Reading.
|
[4]
|
Drechsler, W. and Mayer, M.E. (1977) Fiber Bundle Techniques in Gauge Theories. Springer Lecture Notes in Physics 67. Springer, New York.
|
[5]
|
Gockeler, M. (1987) Differential Geometry, Gauge Theories and Gravity. Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge.
|
[6]
|
Yang, C.N. (1977) Annals of the New York Academy of Sciences, 294, 86-97. http://dx.doi.org/10.1111/j.1749-6632.1977.tb26477.x
|
[7]
|
Pommaret, J.-F. (1994) Partial Differential Equations and Group Theory. Kluwer, Dordrecht. http://dx.doi.org/10.1007/978-94-017-2539-2
|
[8]
|
Arnold, V. (1974) Méthodes Mathématiques de la Mécanique Classique. Appendice 2 (Géodésiques des Métriques Invariantes à Gauche sur des Groupes de Lie et Hydrodynamique des Fluides Parfaits), MIR, Moscow.
|
[9]
|
Arnold, V. (1966) Annales de l’Institut Fourier, 16, 319-361.
|
[10]
|
Birkhoff, G. (1954) Hydrodynamics. Princeton University Press, Princeton.
|
[11]
|
Pommaret, J.-F. (2009) AJSE-Mathematics, 1,157-174.
|
[12]
|
Poincaré, H. (1901) C. R. Académie des Sciences Paris, 132, 369-371.
|
[13]
|
Pommaret, J.-F. (1988) Lie Pseudogroups and Mechanics. Gordon and Breach, New York.
|
[14]
|
Ougarov, V. (1969) Théorie de la Relativité Restreinte. MIR, Moscow.
|
[15]
|
Pommaret, J.-F. (2001) Acta Mechanica, 149, 23-39. http://dx.doi.org/10.1007/BF01261661
|
[16]
|
Pommaret, J.-F. (2012) Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics. In: Gan, Y.X., Ed., Continuum Mechanics-Progress in Fundamentals and Engineering Applications. http://www.intechopen.com/books/continuum-mechanics-progress-in-fundamentals-and-engineering-applications/spencer-operator-and-applications-from-continuum-mechanics-to-mathematical-physics
|
[17]
|
Cosserat, E. and Cosserat, F. (1909) Théorie des Corps Déformables. Hermann, Paris.
|
[18]
|
Pommaret, J.-F. (2010) Acta Mechanica, 215, 43-55. http://dx.doi.org/10.1007/s00707-010-0292-y
|
[19]
|
Weyl, H. (1922) Space, Time, Matter. Springer, London.
|
[20]
|
Pommaret, J.-F. (2013) Journal of Modern Physics, 4, 223-239. http://dx.doi.org/10.4236/jmp.2013.48A022
|
[21]
|
Zou, Z., Huang, P., Zhang, Y. and Li, G. (1979) Scientia Sinica, XXII, 628-636.
|
[22]
|
Pommaret, J.-F. (1978) Systems of Partial Differential Equations and Lie Pseudogroups. Gordon and Breach, New York.
|
[23]
|
Pommaret, J.-F. (1983) Differential Galois Theory. Gordon and Breach, New York.
|
[24]
|
Vessiot, E. (1903) Annales Scientifiques Ecole Normale Supérieure, 20, 411-451.
|
[25]
|
Kumpera, A. and Spencer, D.C. (1972) Lie Equations. Princeton University Press, Princeton.
|
[26]
|
Teodorescu, P.P. (1975) Dynamics of Linear Elastic Bodies. Abacus Press, Tunbridge Wells, Kent, England.
|
[27]
|
Spencer, D.C. (1965) Bulletin of the American Mathematical Society, 75, 1-114.
|
[28]
|
Janet, M. (1920) Journal de Math., 8, 65-151.
|
[29]
|
Rotman, J.J. (1979) An Introduction to Homological Algebra. Academic Press, Waltham.
|
[30]
|
Pommaret, J.-F. (2001) Partial Differential Control Theory. Kluwer, Dordrecht.
|
[31]
|
Pommaret, J.-F. (2005) Algebraic Analysis of Control Systems Defined by Partial Differential Equations. In: Lamnabhi-Lagarrigue, F., Loría, A. and Panteley, E. Eds., Advanced Topics in Control Systems Theory, Lecture Notes in Control and Information Sciences 311, Chapter 5. Springer, London, 155-223.
|
[32]
|
Kunz, E. (1985) Introduction to Commutative Algebra and Algebraic Geometry. Birkhaüser, Boston.
|
[33]
|
Pommaret, J.-F. (2013) Multidimensional Systems and Signal Processing. http://dx.doi.org/10.1007/s11045-013-0265-0
|