[1]
|
Chatterjee, S. (2013) Handbook of Regression Analysis. Wiley Handbooks in Applied Statistics, Hoboken.
|
[2]
|
Reilly, D., Ensslin, N., Smith Jr., H. and Kreiner, S., Eds. (1991) Passive Nondestructive Assay of Nuclear Materials. US Nuclear Regulatory Commission Report NUREG/CR-5500.
|
[3]
|
Topping, J. (1957) Errors of Observation and Their treatment (Revised Edition). The Institute of Physics, Chapman and Hall Limited, London.
|
[4]
|
Bevington, P. and Robinson, D. (2002) Data Reduction and Error Analysis for the Physical Sciences. McGraw Hill, New York.
|
[5]
|
Jaech, J. (1980) Statistical Analysis for Assay Systems. In: Sher, R. and Untermyer II, S., Eds., The Detection of Fissionable Materials by Nondestructive Means, American Nuclear Society, La Grange Park.
|
[6]
|
Keepin, G. (1980) Nuclear Safeguards—A Global Issue. Los Alamos Science, 68-87.
|
[7]
|
Krutchkoff, R. (1967) Classical and Inverse Regression Methods of Calibration. Technometrics, 9, 425-439. http://dx.doi.org/10.1080/00401706.1967.10490486
|
[8]
|
Willink, R. (2008) Estimation and Uncertainty in Fitting Straight lines to Data: Different Techniques. Metrologia, 45, 290-298. http://dx.doi.org/10.1088/0026-1394/45/3/005
|
[9]
|
Burr, T., Pickrell, M., Rinard, P. and Wenz, T. (1999) Data Mining: Applications to Nondestructive Assay Data. Journal of Nuclear Materials Management, 27, 40-47.
|
[10]
|
Burr, T., Dowell, J., Trellue, H. and Tobin, S. (2014) Measuring the Effects of Data Mining on Inference. Encylopedia of Information Sciences, 3rd Edition.
|
[11]
|
Burr, T., Croft, S. and Reed, C. (2012) Least-Squares Fitting with Errors in the Response and Predictor. International Journal of Metrology and Quality Engineering, 3, 117-123. http://dx.doi.org/10.1051/ijmqe/2012010
|
[12]
|
Team, R. (2010) A Language and Environment for Statistical Computing, Vienna, Austria, R Foundation for Statistical Computing. www.R-project.org
|
[13]
|
Burr, T. and Hamada, M.S. (2013) Revisiting Statistical Aspects of Nuclear Material Accounting Science and Technology of Nuclear Installations. 2013, 961360. http://dx.doi.org/10.1155/2013/961360
|
[14]
|
Burr, T., Kawano, T., Talou, P., Pen, F., Hengartner, N. and Graves, T. (2011) Alternatives to the Generalized Least Squares Solution to Peele’s Pertinent Puzzle. Algorithms, 4, 115-130. http://dx.doi.org/10.3390/a4020115
|
[15]
|
Carroll, R., Wu, J. and Ruppert, D. (1988) The Effect of Weights in Weighted Least Squares Regression. Journal of the American Statistical Association, 83, 1045-1054. http://dx.doi.org/10.1080/01621459.1988.10478699
|
[16]
|
Carroll, R. and Cline, D. (1988) An Asumptotic Theory for Weighted Least Squares with Weights Estimated by Replication. Biometrika, 75, 35-41. http://dx.doi.org/10.1093/biomet/75.1.35
|
[17]
|
Liu, W., Lin, S. and Piegorsch, W. (2008) Construction of Exact Simultaneous Confidence Bands for a Simple Linear Regression Model. International Statistical Review, 76, 39-57.
|
[18]
|
Croft, S., Burr, T. and Favalli, A. (2012) A Simple-Minded Direct Approach to Estimating the Calibration Parameter for Proportionate Data. Radiation Measurements, 47, 486-491. http://dx.doi.org/10.1016/j.radmeas.2012.04.015
|
[19]
|
Henry, M., Croft, S., Zhu, H. and Villani, M. (2007) Representing Full-Energy Peak Gamma-Ray Efficiency Surfaces in Energy and Density When the Calibration Data Is Correlated. Waste Management Symposia, 25 February-1 March 2007, Tucson, 7325.
|