Share This Article:

Semi-Markovian Model of Control of Restorable System with Latent Failures

Abstract Full-Text HTML Download Download as PDF (Size:129KB) PP. 383-388
DOI: 10.4236/am.2011.23046    4,601 Downloads   7,947 Views   Citations

ABSTRACT

Mathematical model of control of restorable system with latent failures has been built. Failures are assumed to be detected after control execution only. Stationary characteristics of system operation reliability and efficiency have been defined. The problem of control execution periodicity optimization has been solved. The model of control has been built by means of apparatus of semi-Markovian processes with a discrete-contin- uous field of states.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Obzherin, A. Peschansky and Y. Boyko, "Semi-Markovian Model of Control of Restorable System with Latent Failures," Applied Mathematics, Vol. 2 No. 3, 2011, pp. 383-388. doi: 10.4236/am.2011.23046.

References

[1] D. I. Cho and M. Parlar, “A Survey of Maintenance Models for Multi-Unit Systems,” European Journal of Operational Research, Vol. 51, No. 2, 1991, pp. 1-23. doi:10.1016/0377-2217(91)90141-H
[2] R. Dekker and R. A. Wildeman, “A Review of Multi- Component Maintenance Models with Economic Dependence,” Mathematical Methods of Operations Research, Vol. 45, No. 3, 1997, pp. 411-435. doi:10.1007/BF01194788
[3] F. Beichelt and P. Franken, “Zuverlassigkeit und Instavphaltung,” Mathematische Methoden, VEB Verlag Technik, Berlin, 1983.
[4] R. E. Barlow and F. Proschan, “Mathematical Theory of Reliability,” John Wiley & Sons, New York, 1965.
[5] Y. E. Obzherin and A. I. Peschansky, “Semi-Markovian Model of Monotonous System Maintenance with Regard to Its Elements Deactivation and Age,” Applied Mathematics, Vol. 1, No. 3, 2010, pp. 234-243. doi:10.4236/am.2010.13029
[6] V. S. Korolyuk and A. F. Turbin, “Markovian Restoration Processes in the Problems of System Reliability,” Naukova Dumka, Kiev, 1982.
[7] V. M. Shurenkov, “Ergodic Markovian Processes,” Nauka, Moscow, 1989.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.