Monitoring Heat Waves and Their Impacts on Summer Crop Development in Southern Brazil

DOI: 10.4236/as.2014.54037   PDF   HTML   XML   4,603 Downloads   5,937 Views   Citations


Periods in the soybean summer cycle that are sensitive to the occurrence of high temperatures were studied. An analysis was performed on the variability of soybean yields associated with crop canopy temperatures during key development periods. A land surface temperature (LST) data series from MODIS (Moderate Resolution Imaging Spectroradiometer) on the Aqua satellite was processed between 2003 and 2012 that covered the entire state of Rio Grande do Sul, in Brazil. Enhanced vegetation index (EVI) data from MODIS on the Terra satellite were used to monitor the LST during different phenological stages. Spatially interpolated maps of soybean yield distributions were generated using data obtained from Instituto Brasileiro de Geografia e Estatística (IBGE) at state and municipality levels. The results indicate that canopy-LST occurrence in mid-February, during the grain filling, is most correlated to yield reduction (R2 = 0.82 and RMSD = 14.4%). At the state level, the average yield is 2003 kg·ha-1 with a standard deviation of 308 kg·ha-1. The overall average of the canopy-LST is 305.0 K (31.8°C) with a standard deviation of 1.9 K. The slope of the downward linear relationship between canopy-LST and yield was -28.7%. These results indicate that monitoring heat wave events can provide important information for characterising agriculture vulnerability.

Share and Cite:

Gusso, A. , Ducati, J. , Veronez, M. , Sommer, V. and Silveira Junior, L. (2014) Monitoring Heat Waves and Their Impacts on Summer Crop Development in Southern Brazil. Agricultural Sciences, 5, 353-364. doi: 10.4236/as.2014.54037.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] UNEP—United Nations Environment Programme (2009) Environmental Food Crisis. The Environment’s Role in Averting Future Food Crises.
[2] Masuda, T. and Goldsmith, P.D. (2009) World Soybean Production: Area Harvested, Yield, and Long-Term Projections. International Food and Agribusiness Management Review, 12, 143-163.
[3] Lobell, D.B., Burke, M.B., Tebaldi, C., Mastrandrea, M.D., Falcon, W.P. and Naylor, R.L. (2008) Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science, 319, 607-610.
[4] Batistti, D.S. and Naylor, R.L. (2009) Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science, 323, 240-244.
[5] Streck, N.A. and Alberto, C.N. (2006) Estudo numérico do impacto da mudança climática sobre o rendimento de trigo, soja e milho. Pesquisa Agropecuária Brasileira, 41, 1351-1359.
[6] FAO—Food and Agriculture Organization (2011) The State of Food Insecurity in the World.
[7] Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J. and Zhao, Z.-C. (2007) Global Climate Projections. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L., Eds., Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York, 747-846.
[8] Gorman, P.A. and Schneider, T. (2009) The Physical Basis for Increases in Precipitation Extremes in Simulations of 21st-Century Climate Change. Proceedings of the National Academy of Sciences, 106, 14773-14777.
[9] Rosenzweig, C., Iglesius, A., Yang, X.B., Epstein, P. and Chivian, E. (2001) Climate Change and Extreme Weather Events: Implications for Food Production, Plant Diseases, and Pests. NASA Publications-Paper 24, 2, 90-104.
[10] Carmo-Silva, A.E., Gore, M.A., Andrade-Sanchez, P., French, A.N., Hunsaker, D.J. and Salvucci, M.E. (2012) Decreased CO2 Availability and Inactivation of Rubisco Limit Photosynthesis in Cotton Plants under Heat and Drought Stress in the Field. Environmental and Experimental Botany, 83, 1-11.
[11] Howden, S.M., Soussana, J.-F., Tubiello, F.N., Chhetri, N. Dunlop, M. and Meinke, H. (2007) Adapting Agriculture to Climate Change. Proceedings of the National Academy of Sciences, 104, 19691-19696.
[12] Wheeler, T.R., Craufurd, P.Q., Ellis, R.H., Porter, J.R. and Prasad, P.V.V. (2000) Temperature Variability and the Yield of Annual Crops. Agriculture, Ecosystems and Environment, 82, 159-167.
[13] Sediyama, T. (2009) Tecnologias de produção e usos da soja. Mecenas, Londrina, 314.
[14] Khan, A.Z., Shah, P. Khan, H., Nigar, S., Perveen, S., Shah, M.K., Amanullah, A., Khalil, S.K., Munir, S. and Zubair, M. (2011) Seed Quality and Vigor of Soybean Cultivars as Influenced by Canopy Temperature. Pakistan Journal of Botany, 43, 643-648.
[15] Lobell, D.B. and Asner, G.P. (2003) Climate and Management Contributions to Recent Trends in US Agricultural Yields. Science, 229, 1032.
[16] Meerburg, B.G., Verhagen, A., Jongschaap, R.E.E., Franke, A.C., Schaap, B.F., Dueck, T.A. and van der Werf, A. (2009) Do Nonlinear Temperature Effects Indicate Severe Damages to US Crop Yields under Climate Change? Proceedings of the National Academy of Sciences, 106, 120.
[17] Schlenker, W. and Roberts, M. (2009) Nonlinear Temperature Effects Indicate Severe Damages to US Crop Yields under Climate Change. Proceedings of the National Academy of Sciences, 106, 15594-15598.
[18] CONAB—Companhia Nacional de Abastecimento (2012) Acompanhamento da safra brasileira de grãos. CONAB/ DIPAI/SUINF/GEASA. Conab: Brasília.
[19] Matzenauer, R., Barni, N.A. and Maluf, J.R.T. (2003) Estimative of the Relative Water Consumption of Soybean in Rio Grande do Sul State, Brazil. Ciência Rural, 33, 1013-1019.
[20] Fontana, D.C., Weber, E., Ducati, J.R., Berlato, M.A., Guasselli, L.A. and Gusso, A. (2002) Monitoramento da cultura da soja no centro—Sul do Brasil durante La Niña de 1998/2000. Revista Brasileira de Agrometeorologia, 10, 343-351.
[21] Ferreira, D.B. (2010) Análise da variabilidade climática e suas consequencias para a produtividade da soja na região sul do Brasil. Ph.D. Thesis, INPE, São José dos Campos.
[22] Melo, R.W., Fontana, D.C. and Berlato, M.A. (2004) Indicadores de produção de soja no Rio Grande do Sul comparados ao zoneamento agrícola. Pesquisa Agropecuária Brasileira, 39, 1167-1175.
[23] IBGE—Instituto Brasileiro de Geografia e Estatística (2012) SIDRA: Sistema IBGE de recuperação automática.
[24] Gusso, A. (2013) Integration of NOAA/AVHRR Images: Cooperation Network towards National Soybean Crop Monitoring. Revista Ceres, 60, 43-52.
[25] Esquerdo, J.C.D.M., Zullo, J. and Antunes, J.F.G. (2011) Use of NDVI/AVHRR Time-Series Profiles for Soybean Crop Monitoring in Brazil. International Journal of Remote Sensing, 32, 3711-3727.
[26] De Melo, R.W., Fontana, D.C., Berlato, M.A. and Ducati, J.R. (2008) Anagrometeorological-Spectral Model to Estimate Soybean Yield, Applied to Southern Brazil. International Journal of Remote Sensing, 29, 4013-4028.
[27] Gusso, A., Ducati, J.R., Veronez, M.R., Arvor, D. and Silveira Jr., L.G. (2013) Spectral Model for Soybean Yield Estimate Using MODIS/EVI Data. International Journal of Geosciences, 4, 1233-1241.
[28] Junges, A.H., Fontana, D.C. and Melo, R.W. (2012) Caracterização do cultivo de trigo na região norte do Estado do Rio Grande do Sul através das estimativas oficiais de área cultivada, produção e rendimento de grãos. Ciência Rural, 42, 31-37.
[29] Gusso, A., Adami, M., Formaggio, A.R., Rizzi, R. and Rudorff, B.T.F. (2012) Soybean Area Estimation and Mapping by Means MODIS/EVI Data. Pesquisa Agropecuária Brasileira, 47, 425-435.
[30] Mabilana, H.A., Fontana, D.C. and Fonseca, E.L. (2012) Desenvolvimento de modelo agrometeorológico espectral para estimativa de rendimento do milho na Província de Manica-Moçambique. Revista Ceres, 59, 337-349.
[31] Seiler, R.A., Kogan, F. and Sullivan, J. (1998) AVHRR-Based Vegetation and Temperature Condition Indices for Drought Detection in Argentina. Advances in Space Research, 21, 481-484.
[32] Nemani, R. and Running, S. (1997) Land Cover Characterization Using Multitemporal Red, Near-Ir and Thermal-Ir Data from NOAA/AVHRR. Ecological Applications, 7, 79-90.[0079:LCCUMR]2.0.CO;2
[33] Running, S.W., Loveland, T.R., Pierce, L.L., Nemani, R.R. and Hunt, E.R. (1995) A Remote Sensing Based Vegetation Classification Logic for Global Land Cover Analysis. Remote Sensing of Environment, 51, 39-48.
[34] Liu, W.T. and Kogan, F. (2002) Monitoring Brazilian Soybean Production Using NOAA/AVHRR Based Vegetation Indices. International Journal of Remote Sensing, 23, 1161-1179.
[35] Board, J.E. and Kahlon, C.S. (2007) Soybean Yield Formation: What Controls It and How It Can Be Improved. In: El-Shemy, H.A., Ed., Soybean Physiology and Biochemistry, InTech Open Access, Rijeka, 1-36.
[36] Hope, A.S., Petzold, D.E., Goward, S.N. and Ragan, R.M. (1986) Simulated Relationships between Spectral Reflectance Thermal Emissions and Evapotranspiration of a Soybean Canopy. Journal of the American Water Resources Association, 22, 1011-1019.
[37] Rodrigues, O., Didonet, A.D., Lhamby, J.C.D., Bertagnolli, P.F. and Luz, J.S. (2001) Resposta quantitativa do florescimento da soja à temperatura e ao fotoperíodo. Pesquisa Agropecuária Brasileira, 36, 431-437.
[38] Gibson, L.R. and Mullen, R.E. (1996) Soybean Seed Quality Reductions by High Day and Night Temperature. Crop Science, 36, 1615-1619.
[39] Craufurd, P.Q. and Wheeler, T.R. (2009) Climate Change and the Flowering Time of Annual Crops. Journal of Experimental Botany, 60, 2529-2539.
[40] Koppen, W. (1948) Climatologia. Fondo de Cultura Economica, Mexico, 71.
[41] INMET—Instituto Nacional de Meteorologia (2009) Normais Climatológicas do Brasil de 1961 a 1990. ep/bdmep
[42] Saraiva, K.R. and Souza, F. (2012) Estatísticas sobre irrigação nas regiões sul e sudeste do Brasil segundo o censo agropecuário 2005-2006. Revista Irriga, 17, 168-176.
[43] Paulino, J., Folegatti, M.V., Zolin, C.A., Sánchez-Román, R.M. and José, J.V. (2011) Situação da agricultura irrigada no Brasil de acordo com o censo agropecuário 2006. Revista Irriga, 16, 163-176.
[44] Wan, Z.M. (2008) New Refinements and Validation of the MODIS Land-Surface Temperature/Emissivity Products. Remote Sensing of Environment, 112, 59-74.
[45] Seiler, R.A. and Kogan, F. (2002) Monitoring ENSO Cycles and Their Impacts on Crops in Argentina from NOAA-AVHRR Satellite Data. Advances in Space Research, 30, 2489-2493.
[46] Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. and Ferreira, L.G. (2002) Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sensing of Environment, 83, 195-213.
[47] Justice, C.O., Townshend, J.R.G., Vermote, E.F., Masuoka, E., Wolfe, R.E., Saleous, N., Roy, D.P. and Morisette, J.T. (2002) An Overview of MODIS Land Data Processing and Product Status. Remote Sensing of Environment, 83, 3-15.
[48] NASA-National Aeronautics and Space Administration (2014) Land Processes Distributed Active Archive Center (LPDAAC).
[49] Kogan, F. (2001) Operational Space Technology for Global Vegetation Assessment. Bulletin of the American Meteorological Society, 82, 1949-1964.<1949:OSTFGV>2.3.CO;2
[50] Cunha, G.R., Barni, N.A., Haas, J.C., Maluf, J.R.T., Matzenauer, R., Pasinato, A., Pimentel, M.B.M. and Pires, J.L.F. (2001) Zoneamento agrícola e época de semeadura para soja no Rio Grande do Sul. Revista Brasileira de Agrometeorologia, 9, 446-459.
[51] Sims, D.A., Rahman, A.F., Cordova, V.D., El-Masri, B.Z., Baldocchi, D.D, Bolstad, P.V., Flanagan, L.B., Goldstein, A.H., Hollinger, D.Y., Misson, L., Monson, R.K., Oechel, W.C., Schmid, H.P., Wofsy, S.C. and Xu, L. (2008) A New Model of Gross Primary Productivity for North American Ecosystems Based Solely on the Enhanced Vegetation Index and Land Surface Temperature from MODIS. Remote Sensing of Environment, 112, 1633-1646.
[52] Hecht, E. (1998) Optics. 3rd Edition, Addison-Wesley, Reading, 694.
[53] Lillesand, T.M., Kiefer, R.W. and Chipman, J.W. (2003) Remote Sensing and Image Interpretation. 5th Edition, John Wiley & Sons, Hoboken.
[54] Eisberg, R. and Resnik, R. (1985) Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles. 2nd Edition, Wiley, Hoboken, 928.
[55] Elachi, C. (1987) Introduction to the Physics and Techniques of Remote Sensing. Wiley, New York.
[56] Diak, G.R. and Whipple, M.S. (1993) Improvements to Models and Methods for Evaluating the Land-Surface Energy Balance and Effective Roughness Using Radiosonde Reports and Satellite-Measured Skin Temperature Data. Agricultural and Forest Meteorology, 63, 189-218.
[57] Salisbury, J.W. (1986) Preliminary Measurements of Leaf Spectral Reflectance in the 8-14 um Region. International Journal of Remote Sensing, 7, 1879-1886.
[58] Sandholt, L., Rasmunssen, K. and Andersen, J. (2002) A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status. Remote Sensing of Environment, 79, 213-224.
[59] Jian-Guo, L. and Mason, P.J. (2009) Essential Image Processing and GIS for Remote Sensing. Wiley-Blackwell, 460.
[60] Anderson, M.C., Norman, J.M., Diak, G.R., Kustas, W.P. and Mecikalski, J.R. (1997) A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing. Remote Sensing of Environment, 60, 195-216.
[61] Wan, Z., Wang, P. and Li, X. (2004) Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index Products for Monitoring Drought in the Southern Great Plains, USA. International Journal of Remote Sensing, 25, 61-72.
[62] Peterson, T.C., Stott, P.A. and Herring, S. (2012) Explaining Extreme Events of 2011 from a Climate Perspective. American Meteorological Society, 93, 1041-1067.
[63] Salvucci, M.E. (2008) Association of Rubisco Activase with Chaperonin-60β: A Possible Mechanism for Protecting Photosynthesis during Heat Stress. Journal of Experimental Botany, 59, 1923-1933.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.