[1]
|
López-Rodas, V., Maneiro, E. and Costas, E. (2006) Adaptation of Cyanobacteria and Microalgae to Extreme Environmental Changes Derived from Anthropogenic Pollution. Limnetica, 25, 403-410.
|
[2]
|
Pandhal, J., Wright, P.C. and Biggs, C.A. (2008) Proteomics with a Pinch of Salt: A Cyanobacterial Perspective. Saline Systems, 4, 1-18. http://dx.doi.org/10.1186/1746-1448-4-1
|
[3]
|
Mikkat, S., Hagemann, M. and Schoor, A. (1996) Active Transport of Glucosylglycerol Is Involved in Salt Adaptation of the Cyanobacterium Synechocystis sp. Strain PCC 6803. Microbiology, 142, 1725-1732. http://dx.doi.org/10.1099/13500872-142-7-1725
|
[4]
|
Allakhverdiev, S.I., Klimov, V.V. and Hagemann, M. (2005) Cellular Energization Protects the Photosynthetic Machinery against Salt-Induced Inactivation in Synechococcus. BBA-Bioenergetics, 1708, 201-208. http://dx.doi.org/10.1016/j.bbabio.2005.01.002
|
[5]
|
La Camera, S., Gouzerh, G., Dhondt, S., Hoffman, L., Frittig, B., Legrand, M. and Heitz, T. (2004) Metabolic Reprogramming in Plant Innate Immunity: The Contributions of Phenylpropanoid and Oxylipin Pathways. Immunological Reviews, 198, 267-284. http://dx.doi.org/10.1111/j.0105-2896.2004.0129.x
|
[6]
|
Janas, K.M., Cvikrova, M., Palagiewicz, A. and Eder, J. (2000) Alterations in Phenylpropanoid Content in Soybean Roots during Low Temperature Acclimation. Plant Physiology and Biochemistry, 38, 587-593. http://dx.doi.org/10.1016/S0981-9428(00)00778-6
|
[7]
|
Singh, U.P., Sarma, B.K. and Singh, D.P. (2003) Effect of Plant Growth Promoting Rhizobacteria and Culture Filtrate of Sclerotium rolfsii on Phenolic and Salicylic Acid Contents in Chickpea (Cicer arietinum). Current Microbiology, 46, 131-140. http://dx.doi.org/10.1007/s00284-002-3834-2
|
[8]
|
Vogt, T. (2010) Phenylpropanoid Biosynthesis. Molecular Plant, 3, 2-20. http://dx.doi.org/10.1093/mp/ssp106
|
[9]
|
Oueslati, S., Karray-Bouraoui, N., Attia, H., Rabhi, M., Ksouri, R. and Lachaal, M. (2010) Physiological and Antioxidant Responses of Mentha pulegium (Pennyroyal) to Salt Stress. Acta Physiologiae Plantarum, 32, 289-296. http://dx.doi.org/10.1007/s11738-009-0406-0
|
[10]
|
Edreva, A., Velikova, V., Tsonev, T., Dagnon, S., Gürel, A., AktaS, L. and Gesheva, E. (2008) Stress-Protective Role of Secondary Metabolites: Diversity of Functions and Mechanisms. General and Applied Plant Physiology, XXXIV, 67-78.
|
[11]
|
Ramakrishna, A. and Ravi Shankar, G.A. (2011) Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signal Behaviour, 6, 1720-1731. http://dx.doi.org/10.4161/psb.6.11.17613
|
[12]
|
Agati, G., Biricolti, S., Guidi, L., Ferrini, F., Fini, A. and Tattini, M. (2011) The Biosynthesis of Flavonoids Is Enhanced Similarly by UV Radiation and Root Zone Salinity in L. vulgare Leaves. Journal of Plant Physiology, 168, 204-212. http://dx.doi.org/10.4161/psb.6.11.17613
|
[13]
|
Korkina, L.G. (2007) Phenylpropanoids as Naturally Occurring Antioxidants from Plant Defence to Human Health. Cellular and Molecular Biology, 53, 15-25.
|
[14]
|
Ferjani, A., Mustardy, L., Sulpice, R., Marin, K., Suzuki I., Hageman, M. and Murata, N. (2003) Glucosylglycerol, a Compatible Solute, Sustains Cell Division under Salt Stress. Plant Physiology, 131, 1628-1637. http://dx.doi.org/10.1104/pp.102.017277
|
[15]
|
Kim, D.O., Jeong, S.W. and Lee, C.Y., (2003) Antioxidant Capacity of Phenolic Phytochemicals from Various Cultivars of Plums. Food Chemistry, 81, 321-326. http://dx.doi.org/10.1016/S0308-8146(02)00423-5
|
[16]
|
Beta, T., Nam, S., Dexter, J.E. and Sapirstein, H.D. (2005) Phenolic Content and Antioxidant Activity of Pearled Wheat and Roller Milled Fractions. Cereal Chemistry, 82, 390-393. http://dx.doi.org/10.1094/CC-82-0390
|
[17]
|
Kesheri, M., Richa and Sinha, R.P. (2011) Antioxidants as Natural Arsenal against Multiple Stresses in Cyanobacteria. International Journal of Pharma and Bio Sciences, 2, B169-B187.
|
[18]
|
Kanesaki, Y., Suzuki, I., Allakhverdiev, S.I., Mikami, K. and Murata, N. (2002) Salt Stress and Hyperosmotic Stress Regulate the Expression of Different Sets of Genes in Synechocystis sp. PCC 6803. Biochemica Biophysica Research Communication, 290, 339-348. http://dx.doi.org/10.1006/bbrc.2001.6201
|
[19]
|
Tang, D., Shi, S., Li, D., Hu, C. and Liu, Y. (2007) Physiological and Biochemical Responses of Scytonema javanicum (cyanobacterium) to Salt Stress. Journal of Arid Environments, 71, 312-320. http://dx.doi.org/10.1006/bbrc.2001.6201
|
[20]
|
Allakhverdiev, S.I. and Murata, N. (2008) Salt Stress Inhibits Photosystems II and I in Cyanobacteria. Photosynthetic Research, 98, 529-39. http://dx.doi.org/10.1007/s11120-008-9334-x
|
[21]
|
Hagemann, M. (2011) Molecular Biology of Cyanobacterial Salt Acclimation. FEMS Microbiology Review, 35, 87-123. http://dx.doi.org/10.1111/j.1574-6976.2010.00234.x
|
[22]
|
Mpofu, A., Sapirstein, H.D. and Beta, T. (2006) Genotype and Environmental Variation in Phenolic Content, Phenolic Acid Composition, and Antioxidant Activity of Hard Spring Wheat. Journal of Agricultural and Food Chemistry, 54, 1265-1270.
|
[23]
|
Karamac, M., KosiÑska, A. and Pegg, R.B. (2005) Comparison of Radical-Scavenging Activities for Selected Phenolic Acids. Polish Journal of Food Nutrition Science, 14, 165-170.
|
[24]
|
Abogadallah, G.A. (2010) Antioxidative Defense under Salt Stress. Plant Signaling & Behavior, 5, 369-374. http://dx.doi.org/10.4161/psb.5.4.10873
|