New Preparation Method of Visible Light Responsive Titanium Dioxide Photocatalytic Films

DOI: 10.4236/msa.2014.53016   PDF   HTML     5,142 Downloads   7,424 Views   Citations


We report a new and simple preparation method of the visible light responsive Titanium dioxide (TiO2) photocatalytic films using sol-gel method and ultraviolet light (UV) irradiation. Proposed films were prepared on fused silica plates using titanium tetra-isopropoxide, urea, 2-methoxyethanol, water and UV irradiation. The 650°C-annealed films were carbon-containing anatase type TiO2, not carbon-doped ones. The prepared films absorbed visible light with wavelengths longer than 400 nm. Also, organic dyes were effectively photodegradated by visible light irradiation in the presence of these films.

Share and Cite:

Nishizawa, K. , Okada, M. and Watanabe, E. (2014) New Preparation Method of Visible Light Responsive Titanium Dioxide Photocatalytic Films. Materials Sciences and Applications, 5, 112-123. doi: 10.4236/msa.2014.53016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
[2] Jaeger, C.D. and Bard, A.J. (1979) Spin Trapping and Electron Spin Resonance Detection of Radical Intermediates in the Photodecomposition of Water at TiO2 Particles Systems. The Journal of Physical Chemistry A, 83, 3146-3152.
[3] O’Regan, B. and Gratzel, M. (1991) A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature, 353, 737-740.
[4] Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W. (1995) Enviromental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95, 69-96.
[5] Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M. and Watanabe, T. (1997) Light-Induced Amphiphilic Surfaces. Nature, 388, 431-432.
[6] Khan, S.U.M., Al-Shahry, M. and Ingler Jr., W.B. (2002) Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science, 297, 2243-2245.
[7] Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E. and Hidaka, H. (1995) Exploiting the Interparticle Electron Transfer Process in the Photocatalysed Oxidation of Phenol, 2-Chlorophenol and Pentachlorophenol: Chemical Evidence for Electron and Hole Transfer between Coupled Semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 85, 247-255.
[8] Sakatani, Y., Nunoshige, J., Ando, H., Okusako, K., Koike, H., Takata, T., Kondo, J.N., Hara, M. and Domen, K. (2003) Photocatalytic Decomposition of Acetaldehyde under Visible Light Irradiation over La3+ and N Co-doped TiO2. Chemistry Letters, 32, 1156-1157.
[9] Gole, J.L., Stout, J.D., Burda, C., Lou, Y. and Chen, X. (2004) Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale. The Journal of Physical Chemistry B, 108, 1230-1240.
[10] Miyauchi, M., Takashio, M. and Tobimatsu, H. (2004) Photocatalytic Activity of SrTiO3 Co-doped with Nitrogen and Lanthanum under Visible Light Illumination. Langmuir, 20, 232-236.
[11] Nakamura, I., Negishi, N., Kutsuna, S., Ihara, T., Sugihara, S. and Takeuchi, K. (2000) Role of Oxygen Vacancy in the Plasma-Treated TiO2 Photocatalyst with Visible Light Activity for NO Removal. Journal of Molecular Catalysis A: Chemical, 161, 205-212.
[12] Borgarello, E., Kiwi, J., Gratzel, M., Pelizzetti, E. and Visca, M. (1982) Visible Light Induced Water Cleavage in Colloidal Solutions of Chromium-Doped Titanium Dioxide Particles. Journal of the American Chemical Society, 104, 2996-3002.
[13] Choi, W., Termin, A. and Hoffmann, M.R. (1994) The Role of Metal Ion Dopants in Quantum-sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. The Journal of Physical Chemistry, 98, 13669-13679.
[14] Zang, L., Lange, C., Abraham, I., Storck, S., Maier, W.F. and Kisch, H. (1998) Amorphous Microporous Titania Modified with Platinum (IV) Chloride—A New Type of Hybrid Photocatalyst for Visible Light Detoxification. The Journal of Physical Chemistry B, 102, 10765-10771.
[15] Klosek, S. and Raftery, D. (2001) Visible Light Driven V-doped TiO2 Photocatalyst and its Photooxidation of Ethanol. The Journal of Physical Chemistry B, 105, 2815-2819.
[16] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y. (2001) Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293, 269-271.
[17] Irie, H., Watanabe, Y. and Hashimoto, K. (2003) Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. The Journal of Physical Chemistry B, 107, 5483-5486.
[18] Tachikawa, T., Tojo, S., Kawai, K., Endo, M., Fujitsuka, M., Ohno, T., Nishijima, K., Miyamoto, Z. and Majima, T. (2004) Photocatalytic Oxidation Reactivity of Holes in the Sulfurand Carbon-Doped TiO2 Powders Studied by TimeResolved Diffuse Reflectance Spectroscopy. The Journal of Physical Chemistry B, 108, 19299-19306.
[19] Wang, H. and Lewis, J.P. (2005) Effects of Dopant States on Photoactivity in Carbon-Doped TiO2. Journal of Physics: Condensed Matter, 17, L209-L213.
[20] Chen, D., Jiang, Z., Geng, J., Wang, Q. and Yang, D. (2007) Carbon and Nitrogen Co-Doped TiO2 with Enhanced Visible-Light Photocatalytic Activity. Industrial & Engineering Chemistry Research, 46, 2741-2746.
[21] Dong, F., Zhao, W. and Wu, Z. (2008) Characterization and Photocatalytic Activities of C, N and S Co-Doped TiO2 with 1D Nanostructure Prepared by the Nano-Confinement Effect. Nanotechnology, 19, 365607-365616.
[22] Lettmann, C., Hildenbrand, K., Kisch, H., Macyk, W. and Maier, W.F. (2001) Visible Light Photodegradation of 4-Chlorophenol with a Coke-containing Titanium Dioxide Photocatalyst. Applied Catalysis B: Environmental, 32, 215-227.
[23] Sakthivel, S. and Kisch, H. (2003) Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Angewandte Chemie International Edition, 42, 4908-4911.
[24] Irie, H., Watanabe, Y. and Hashimoto, K. (2003) Carbon-Doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst. Chemistry Letters, 32, 772-773.
[25] Ohno, T., Tsubota, T., Nishijima, K. and Miyamoto, Z. (2004) Degradation of Methylene Blue on Carbonate SpeciesDoped TiO2 Photocatalysts under Visible Light. Chemistry Letters, 33, 750-751.
[26] Choi, Y., Umebayashi, T. and Yoshikawa, M. (2004) Fabrication and Characterization of C-Doped Anatase TiO2 Photocatalysts. Journal of Materials Science, 39, 1837-1839.
[27] Tseng, Y.H., Kuo, C.S., Huang, C.H., Li, Y.Y., Chou, P.W., Cheng, C.L. and Wong, M.S. (2006) Visible-Light-Responsive Nano-TiO2 with Mixed Crystal Lattice and Its Photocatalytic Activity. Nanotechnology, 17, 2490-2497.
[28] Yang, X., Cao, C., Hohn, K., Erickson, L., Maghirang, R., Hamal, D. and Klabunde, K. (2007) Highly Visible-Light Active Cand V-doped TiO2 for Degradation of Acetaldehyde. Journal of Catalysis, 252, 296-302.
[29] Huang, Y., Ho, W., Lee, S., Zhang, L., Li, G. and Yu, J.C. (2008) Effect of Carbon Doping on the Mesoporous Structure of Nanocrystalline Titanium Dioxide and Its Solar-Light-Driven Photocatalytic Degradation of NOx. Langmuir, 24, 3510-3516.
[30] Gu, D., Lu, Y., Yang, B. and Hu, Y. (2008) Facile Preparation of Micro-Mesoporous Carbon-doped TiO2 Photocatalysts with Anatase Crystalline Walls under Template-free Condition. Chemical Communications, 21, 2453-2455.
[31] Dong, F., Wang, H. and Wu, Z. (2009) One-Step “Green” Synthetic Approach for Mesoporous C-Doped Titanium Dioxide with Efficient Visible Light Photocatalytic Activity. The Journal of Physical Chemistry C, 113, 16717-16723.
[32] Mai, L., Huang, C., Wang, D., Zhang, Z. and Wang, Y. (2009) Effect of C Doping on the Structural and Optical Properties of Sol-Gel TiO2 Thin Films. Applied Surface Science, 255, 9285-9289.
[33] Lin, X., Rong, F., Ji, X. and Fu, D. (2011) Carbon-Doped Mesoporous TiO2 Film and Its Photocatalytic Activity. Microporous and Mesoporous Materials, 142, 276-281.
[34] Zabek, P. and Kisch, H. (2010) Polyol-Derived Carbon-modified Titania for Visible Light Photocatalysis. Journal of Coordination Chemistry, 63, 2715-2726.
[35] Nishizawa, K., Miki, T., Suzuki, K. and Kato, K. (2003) Control of Crystallization and Crystal Orientation of AlkoxyDerived SrBi2Ta2O9 Thin Films by Ultraviolet Irradiation. Journal of Materials Research, 18, 899-907.
[36] Nishizawa, K., Miki, T., Suzuki, K. and Kato, K. (2005) Wavelength Dependence of Crystallization of Alkoxy-Derived ZrO2 Thin Films Prepared by Ultraviolet Irradiation. Journal of Materials Research, 20, 3133-3140.
[37] Nishizawa, K., Miki, T., Suzuki, K. and Kato, K. (2007) Photo-Assisted Crystallization of Zirconia Thin Films Prepared Using Chelate Compounds. Journal of Materials Research, 22, 2608-2616.
[38] Nishizawa, K., Miki, T., Suzuki, K. and Kato, K. (2007) Photo-Assisted Crystallization of Zirconia Thin Films and Their Electrical Evaluation. Thin Solid Films, 515, 4004-4010.
[39] Okada, M., Yamada, Y., Jin, P., Tazawa, M. and Yoshimura, K. (2007) Two-Step Nitridation of Photocatalytic TiO2 Films by Low Energy Ion Irradiation. Applied Surface Science, 254, 156-159.
[40] Pirson, A., Mohsine, A., Marchot, P., Michaux, B., Van Cantfort, O. and Pirard, J.P. (1995) Synthesis of SiO2-TiO2 Xerogels by Sol-Gel Process. Journal of Sol-Gel Science and Technology, 4, 179-185.
[41] Caruso, J., Roger, C., Schwertfeger, F., Hampden-Smith, M.J., Rheingold, A.L. and Yap, G. (1995) Solvent-Dependent Ester Elimination and Ligand Exchange Reactions between Trimethylsilyl Acetate and Tin (IV) Tetra-tert-Butoxide. Inorganic Chemistry, 34, 449-453.
[42] Toyoda, M., Hamaji, Y. and Tomono, K. (1997) Fabrication of PbTiO3 Ceramic Fibers by Sol-Gel Processing. Journal of Sol-Gel Science and Technology, 9, 71-84.
[43] Lee, C.S., Kuo, C.N., Shao, M.Y. and Gau, H.M. (1999) Reactions of Ti(O-i-Pr)Cl3 with Bidentate Ligands Containing Hydroxy and Methoxy Groups. The Crystal Structure of Ti(O-i-Pr)Cl3(HOCH2CH2OCH3) and the 1H Variable-Temperature NMR Studies of Solution Structures of Ti(O-i-Pr)Cl3(HOCH2CH2OCH3) and Ti(O-i-Pr)Cl3(CH3OCH2CH2OCH3). Inorganica Chimica Acta, 285, 254-261.
[44] Knolker, H.J., Goesmann, H. and Klauss, R. (1999) A Novel Method for the Demetalation of Tricarbonyliron-Diene Complexes by a Photolytically Induced Ligand Exchange Reaction with Acetonitrile. Angewandte Chemie International Edition, 38, 702-705.<702::AID-ANIE702>3.0.CO;2-W
[45] Bokach, N.A., Haukka, M., Hirva, P., Fatima, M., Silva, C.G.D., Kukushkin, V.Y. and Pombeiro, A.J.L. (2006) Photoinduced Synthesis and Electrochemical Properties of New Ruthenium(mono)bipyridine Dialkylcyanamide and Propiononitrile Complexes. Journal of Organometallic Chemistry, 691, 2368-2377.
[46] Vos, J.G. and Pryce, M.T. (2010) Photoinduced Rearrangements in Transition Metal Compounds. Coordination Chemistry Reviews, 254, 2519-2532.
[47] Garner, R.N., Joyce, L.E. and Turro, C. (2011) Effect of Electronic Structure on the Photoinduced Ligand Exchange of Ru(II) Polypyridine Complexs. Inorganic Chemistry, 50, 4384-4391.
[48] Theophanides, T. and Harvey, P.D. (1987) Structural and Spectroscopic Properties of Metal-Urea Complexes. Coordination Chemistry Reviews, 76, 237-264.
[49] Li, J.G., Yang, X. and Ishigaki, T. (2006) Urea Coordinated Titanium Trichloride TiIII[OC(NH)2]6Cl3: A Single Molecular Precursor Yielding Highly Visible Light Responsive TiO2 Nanocrystallites. Journal of Physical Chemistry B, 110,
[50] Azouani, R., Tieng, S., Chhor, K., Bocquet, J.F., Eloy, P., Gaigneaux, E.M., Klementiev, K. and Kanaev, A.V. (2010) TiO2 Doping by Hydroxyurea at the Nucleation Stage: Towards a New Photocatalyst in the Visible Spectral Range. Physical Chemistry Chemical Physics, 12, 11325-11334.
[51] Linsebigler, A.L., Lu, G. and Yates Jr., J.T. (1995) Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95, 735-758.
[52] Egerton, T.A. and Tooley, I.R. (2004) Effect of Changes in TiO2 Dispersion on Its Measured Photocatalytic Activity. Journal of Physical Chemistry B, 108, 5066-5072.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.