NiOx Nanoparticle Synthesis by Chemical Vapor Deposition from Nickel Acetylacetonate

DOI: 10.4236/msa.2011.24033   PDF   HTML     7,029 Downloads   13,447 Views   Citations


Ni/NiO nanoparticles were synthesized by metal organics chemical vapor deposition of nickel acetylacetonate in an externally heated tube flow reactor at moderate temperatures, up to 500°C. Particle production and characteristics were studied by evaluating the effects of reactor temperature, precursor concentration, and flow rate through the reactor. In addition, two precursor decomposition methods were examined: thermal decomposition and reduction by hydrogen. Particle production was monitored with a scanning mobility particle sizer, and particle characteristics were studied using transmission electron microscopy, high resolution transmission electron microscopy, selected area electron diffraction, and energy dispersive spectroscopy. The presence of hydrogen in the reaction mixture influenced significantly both particle production and their characteristics.

Share and Cite:

P. Moravec, J. Smolík, H. Keskinen, J. Mäkelä, S. Bakardjieva and V. Levdansky, "NiOx Nanoparticle Synthesis by Chemical Vapor Deposition from Nickel Acetylacetonate," Materials Sciences and Applications, Vol. 2 No. 4, 2011, pp. 258-264. doi: 10.4236/msa.2011.24033.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. He, R. H. Heist, B. L. McIntyre and T. N. Blanton, “Ultrafine Nickel Particles Generated by Laser-Induced Gas Phase Photonucleation,” NanoStructured Materials, Vol. 8, No. 7, 1997, pp. 879-888. doi:10.1016/S0965-9773(98)00016-6
[2] Z. J. Suh, H. D. Jang, H. K. Chang, D. W. Hwang and H. C. Kim, “Kinetics of Gas Phase Reduction of Nickel Chloride in Preparation for Nickel Nanoparticles,” Materials Research Bulletin, Vol. 40, No. 12, 2005, pp. 2100-2109. doi:10.1016/j.materresbull.2005.07.004
[3] I. W. Lenggoro, Z. Itoh, N. Iida and K. Okuyama, “Control of Size and Morphology in NiO Particles Prepared by a Low-Pressure Spray Pyrolysis,” Materials Research Bulletin, Vol. 38, No. 14, 2003, pp. 1819-1827. doi:10.1016/j.materresbull.2003.08.005
[4] D. Tao and F. Wei, “New Procedure towards Size-Homogeneous and Well-Dispersed Nickel Oxide Nanoparticles of 30 nm,” Materials Letters, Vol. 58, No. 25, 2004, pp. 3226-3228. doi:10.1016/j.matlet.2004.06.015
[5] C. G. Granqvist, “Handbook of Inorganic Electrochromic Materials,” Elsevier, Amsterdam, 2002, pp. 339-375.
[6] S. V. Kumari, M. Natarajan, V. K. Vaidyan and P. Koshy, “Surface Oxidation of Nickel Thin Films,” Journal of Materials Science Letters, Vol. 11, No. 11, 1992, pp. 761-762. doi:10.1007/BF00729484
[7] X. Li, X. Zhang, Z. Li and Y. Qian, “Synthesis and Characterization of NiO Nanoparticles by Thermal Decomposition of Nickel Dimethylglyoximate Rods,” Solid State Communications, Vol. 137, No. 11, 2006, pp. 581-584. doi:10.1016/j.ssc.2006.01.031
[8] G. G. Couto, J. J. Klein, W. H. Schreiner, D. H. Mosca, A. J. A. de Oliveira and A. J. G. Zarbin, “Nickel Nanoparticles Obtained by a Modified Polyol Process: Synthesis, Characterization, and Magnetic Properties,” Journal of Colloid and Interface Science, Vol. 311, No. 2, 2007, pp. 461-468. doi:10.1016/j.jcis.2007.03.045
[9] T. A. Dobbins, D. Poondi and J. Singh, “Synthesis of Micron and Submicron Nickel and Nickel Oxide Particles by a Novel Laser-Liquid Interaction Process,” Journal of Materials Synthesis and Processing, Vol. 7, No. 5, 1999, pp. 261-271. doi:10.1023/A:1021864719176
[10] K. Wegner and S. E. Pratsinis, “Gas-Phase Synthesis of Nanoparticles: Scale-up and Design of Flame Reactors,” Powder Technology, Vol. 150, No. 2, 2005, pp. 117-122. doi:10.1016/j.powtec.2004.11.022
[11] D.-J. Kang, S.-G. Kim and H.-S. Kim, “Morphologies and Properties of Nickel Particles Prepared by Spray Pyrolysis,” Journal of Materials Science, Vol. 39, No. 18, 2004, pp. 5719-5726. doi:10.1023/B:JMSC.0000040081.43634.31
[12] K.-Y. Jung, J.-H. Lee, H.-Y. Koo, Y.-C. Kang and S.-B. Park, “Preparation of Solid Nickel Nanoparticles by Large-Scale Spray Pyrolysis of Ni(NO3)2?6H2O Precursor: Effect of Temperature and Nickel Acetate on the Particle Morphology,” Materials Science and Engineering B, Vol. 137, No. 1-3, 2007, pp. 10-19. doi:10.1016/j.mseb.2006.09.025
[13] B. Rellinghaus, S. Stappert, E. F. Wassermann, H. Sauer and B. Spliethoff, “The Effect of Oxidation on the Structure of Nickel Nanoparticles,” The European Physical Journal D, Vol. 16, No. 1, 2001, pp. 249-252. doi:10.1007/s100530170103
[14] L. Brissonneau and C. Vahlas, “Precursors and Operating Conditions for the Metal-Organic Chemical Vapor Deposition of Nickel Films,” Annales de Chimie-Science des Materiaux, Vol. 25, No. 2, 2000, pp. 81-90. doi:10.1016/S0151-9107(00)88716-4
[15] L. Brissonneau and C. Vahlas, “MOCVD-Processed Ni Films from Nickelocene. Part I: Growth Rate and Morphology,” Chemical Vapor Deposition, Vo. 5, No. 4, 1999, pp. 135-142. doi:10.1002/(SICI)1521-3862(199908)5:4<135::AID-CVDE135>3.0.CO;2-1
[16] T. Maruyama and T. Tago, “Nickel Thin Films Prepared by Chemical Vapour Deposition from Nickel Acetylacetonate,” Journal of Materials Science, Vol. 28, No. 9, 1993, pp. 5345-5348. doi:10.1007/BF00570088
[17] T. T. Kodas and M. J. Hampden-Smith, “Aerosol Processing of Materials,” Wiley-VCH, New York, 1999, p. 203.
[18] H.-J. G?tze, K. Bloss and H. Molketin, “Dampfdruckbestimmung von Acetylacetonaten,” Zeitschrift für Physikalische Chemie Neue Folge, Vol. 73, No. 4-6, 1970, pp. 314-320. doi:10.1002/ejic.200700146
[19] S. V. Pol, V. G. Pol, I. Felner and A. Gedanken, “The Thermal Decomposition of Three Magnetic Acetates at Their Autogenic Pressure Yields Different Products. Why?,” European Journal of Inorganic Chemistry, Vol. 2007, No. 14, 2007, pp. 2089-2096. doi:10.1002/ejic.200700146
[20] T. Uchikoshi, Y. Sakka, M. Yoshitake and K. Yoshihara, “A Study of the Passivating Oxide Layer on Fine Nickel Particles,” NanoStructured Materials, Vol. 4, No. 2, 1994, pp. 199-206. doi:10.1016/0965-9773(94)90078-7

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.