An Investigation on the Electrochemical Characteristics of Ta2O5-IrO2 Anodes for the Application of Electrolysis Process
Joo-Yul Lee, Dae-Keun Kang, KyuHwan Lee, DoYon Chang
.
DOI: 10.4236/msa.2011.24030   PDF    HTML     6,106 Downloads   12,123 Views   Citations

Abstract

The electrochemical characteristics of Ta2O5-IrO2 electrodes prepared from different chemical compositions and coating methods were observed by using cyclic voltammetry, potentiostatic polarization, galvanostatic polarization and scanning electron microscopy. The efficiency for chloride oxidation and oxygen evolution processes was not only influenced by the chemical composition but also by the surface morphology of the oxide electrode which was susceptible to the ratio of the two components and the coating method. Ta2O5(50)-IrO2(50) electrodes revealed the highest catalytic activity for the chloride ion oxidation and oxygen evolution reaction because they had the largest effective surface area. The durability of the oxide electrodes in the accelerated life tests was improved as the thickness of the oxide layer increased and the ratio of [IrO2] to [Ta2O5] approached 80/20.

Share and Cite:

J. Lee, D. Kang, K. Lee and D. Chang, "An Investigation on the Electrochemical Characteristics of Ta2O5-IrO2 Anodes for the Application of Electrolysis Process," Materials Sciences and Applications, Vol. 2 No. 4, 2011, pp. 237-243. doi: 10.4236/msa.2011.24030.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. Bertolini, F. Bolzoni, T. Pastore and P. Pedeferri, “Effectiveness of a Conductive Cementations Mortar Anode for Cathodic Protection of Steel in Concrete,” Cement and Concrete Research, Vol. 34, No. 4, April 2004, pp. 681-694. doi:10.1016/j.cemconres.2003.10.018
[2] P. Pedeferri, “Cathodic Protection and Cathodic Prevention,” Construction and Building Materials, Vol. 10, No. 5, July 1996, pp. 391-402. doi:10.1016/0950-0618(95)00017-8
[3] R. Hutchings, K. Muller, Kotz and S. Stucki, “A Structural Investigation of Stabilized Oxygen Evolution Catalysts,” Journal of Materials Science, Vol. 19, No. 12, December 1984, pp. 3987-3994. doi:10.1007/BF00980762
[4] F. Beck, “Wear Mechanisms Of Anodes,” Electrochimica Acta, Vol. 34, No. 6, June 1989, pp. 811-822. doi:10.1016/0013-4686(89)87114-2
[5] N. Hiroyuki, T. Kazumi, K. Yukio and O. Kazuhide, “Electroytic Electrode and Its Production,” Japan Patent No.1994-122988, 1994.
[6] S. Takayuki and N. Yasuo, “Electrode for Electrolysis,” Japan Patent No.1993-059580, 1993.
[7] B. V. Tilak, K. Tari and C. L. Hoover, “Metal Anode and Hydrogen Cathodes: Their Activity towards O2 Evolution and ClO3,” Journal of the Electrochemical Society, Vol. 135, No. 6, June 1988, pp. 1386-1392. doi:10.1149/1.2095999
[8] C. Iwakura and K. Sakamoto, “Effect of Active Layer Composition on the Service Life of (SnO2 and RuO2)- Coated Ti Electrodes in Sulfuric Acid Solution,” Journal of the Electrochemical Society, Vol. 132, No. 10, October 1985, pp. 2420-2423. doi:10.1149/1.2113590
[9] M. Ito, Y. Murakami, H. Kaji, K. Yahikozawa and Y. Takasu, “Surface Characterization of RuO2-SnO2 Coated Titanium Electrodes,” Journal of the Electrochemical Society, Vol. 143, No. 1, January 1996, pp. 32-36. doi:10.1149/1.1836383
[10] A. U. Onuchukwu and S. Trasatti, “Effect of Substitution of SnO2 for TiO2 on the Surface and Electrocatalytic Properties of RuO2 + TiO2 Electrodes,” Journal of Applied Electrochemistry, Vol. 21, No. 10, October 1991, pp. 858-862. doi:10.1007/BF01042451
[11] C. Iwakura, M. Inai, T. Uyemura and H. Tamura, “The Anodic Evolution of Oxygen and Chlorine on Foreign Metal-Doped SnO2 Film Electrodes,” Electrochimica Acta, Vol. 26, No. 4, April 1981, pp. 579-584. doi:10.1016/0013-4686(81)87038-7
[12] G. Lodi, E. Sivieri, A. de Battisti and S. Trasatti, “Dioxide-Based Film Electrodes—III. Effect of Chemical Composition and Surface Morphology on Oxygen Evolution in Acid Solutions,” Journal of Applied Electrochemistry, Vol. 8, No. 2, March 1978, pp. 135-143. doi:10.1007/BF00617671
[13] M. D. Spasojevic, N. V. Krstajic and M. M. Jaksic, “Simultaneous Zinc Electrowinning and Chlorine Evolution from Binary Chloride Solution,” Extended Abstracts, Meeting—International Society of Electrochemistry, 1983, p. 2.
[14] S. Trasatti, “Electrochemical Hydrogen Technologies,” Elsevier, 1990.
[15] Ch. Comninellis and G. P. Vercesi, “Characterization of DSA?-Type Oxygen Evolving Electrodes: Choice of a Coating,” Journal of Applied Electrochemistry, Vol. 21, No. 4, April 1991, pp. 335-345. doi:10.1007/BF01020219
[16] J. Krysa, L. Kule, R. Mraz and I. Rousar, “Effect of Coating Thickness and Surface Treatment of Titanium on the Properties of IrO2-Ta2O5 Anodes,” Journal of Applied Electrochemistry, Vol. 26, No. 10, 1996, pp. 999-1005. doi:10.1007/BF00242194
[17] J. Krysa, J. Maixner, R. Mraz and I. Rousar, “Effect of Coating Thickness on the Properties of IrO2-Ta2O5 Anodes,” Journal of Applied Electrochemistry, Vol. 28, No. 3, 1998, pp. 369-372. doi:10.1023/A:1003284204458
[18] R. Mraz and J. Krysa, “Long Service Life IrO2/Ta2O5 Electrodes for Electroflotation,” Journal of Applied Electrochemistry, Vol. 24, No. 12, December 1994, pp. 1262- 1266. doi:10.1007/BF00249891
[19] F. Cardarelli, P. Taxil, A. Savall, Ch. Comninellis, G. Manoli and O. Leclere, “Preparation of Oxygen Evolving Electrodes with Long Service Life under Extreme Conditions,” Journal of Applied Electrochemistry, Vol. 28, No. 3, 1998, pp. 245-250. doi:10.1023/A:1003251329958
[20] E. Roginskaya, O. V. Morozova, E. N. Loubnin, A. V. Popov, Y. I. Ulitina, V. V. Zhurov, S. A. Ivanov and S. Trasatti, “X-Ray Diffraction, Transmission Electron Microscopy and X-Ray Photoelectron Spectroscopic Characterization of IrO2 + Ta2O5 Films,” Journal of the Chemical Society, Faraday Transactions, Vol. 89, No. 11, 1993, pp. 1707-1715. doi:10.1039/ft9938901707
[21] G. P. Vercesi, J. Y. Salamin and C. Comninellis, “A Study of Inhibitor Adsorption by Radiotracer Method,” Electrochimica Acta, Vol. 36, No. 5-6, 1991, pp. 981-984.
[22] R. Otogawa, M. Morimitsu and M. Matsunaga, “Effects of Microstructure of IrO2-Based Anodes on Electrocatalytic Properties,” Electrochimica Acta, Vol. 44, No. 8-9, December 1998, pp. 1509-1513. doi:10.1016/S0013-4686(98)00274-6
[23] Y. Kamegaya, K. Sasaki, M. Oguri, T. Asaki, H. Kobayashi and T. Mitamura, “Improved Durability of Iridium Oxide Coated Titanium Anode with Interlayers for Oxygen Evolution at High Current Densities,” Electrochimica Acta, Vol. 40, No. 7, May 1995, pp. 889-895. doi:10.1016/0013-4686(94)00339-3
[24] S. Kulandaisamy, J. Prabhakar Rethinaraj, S. C. Chockalingam, S. Visvnathan, K. V. Venkateswaran, P. Ramachandran and V. Nandakumar, “Performance of Catalytically Activated Anodes in the Electrowinning of Metals,” Journal of Applied Electrochemistry, Vol. 27, No. 5, 1997, pp. 579-583. doi:10.1023/A:1018454830073
[25] G. N. Martelli, R. Ornelas and G. Faita, “Deactivation Mechanisms of Oxygen Evolving Anodes at High Current Densities,” Electrochimica Acta, Vol. 39, No. 11-12, August 1994, pp. 1551-1558. doi:10.1016/0013-4686(94)85134-4
[26] G. N. Martelli, R. Ornelas and G. Faita, “Effects of Cathodizing on the Morphology and Composition of IrO2/Ta2O5/Ti Anodes,” Electrochimica Acta, Vol. 46, No. 2-3, 1 November 2000, pp. 401-406.
[27] L. K. Xu and J. D. Scantlebury, “Microstructure and Electrochemical Properties of IrO2-Ta2O5-Coated Titanium anodes,” Journal of the Electrochemical Society, Vol. 150, No. 6, July 2003, pp. B254-B261. doi:10.1149/1.1569479
[28] L. K. Xu and J. D. Scantlebury, “Electrochemical Surface Characterization of IrO2-Ta2O5 Coated Titanium Electrodes in Na2SO4 Solution,” Journal of the Electrochemical Society, Vol. 150, No. 6, July 2003, pp. B288-B293. doi:10.1149/1.1574033
[29] T.-C. Wen and C.-C. Hu, “Hydrogen and Oxygen Evolutions on Ru-Ir Binary Oxides,” Journal of the Electrochemical Society, Vol. 139, No. 8, August 1992, pp. 2158-2163. doi:10.1149/1.2221195
[30] V. A. Alves, L. A. da Silva and J. F. C. Boodts, “Surface Characterisation of IrO2/TiO2/CeO2 Oxide Electrodes and Faradaic Impedance Investigation of the Oxygen Evolution Reaction from Alkaline Solution,” Electrochimica Acta, Vol. 44, No. 8-9, December 1998, pp. 1525-1534. doi:10.1016/S0013-4686(98)00276-X
[31] H. Chen and S. Trasatti, “Cathodic Behaviour of IrO2 Electrodes in Alkaline Solution Part I: Electrochemical Surface Characterization,” Journal of Applied Electrochemistry, Vol. 23, No. 6, June 1993, pp. 559-566. doi:10.1007/BF00721946

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.