The Calculation of the Effective Tensor Coefficient of the Medium for the Objects with Microinclusions

Abstract

In this paper, several approaches for calculation of the effective tensor coefficient for domains with inclusions have been proposed. The limits of the approaches using are found. The series of numerical experiments are made on the different frequencies, for different inclusions location and boundary conditions for the contrast properties of the matrix and inclusion materials.

Share and Cite:

Shurina, E. , Epov, M. , Shtabel, N. and Mikhaylova, E. (2014) The Calculation of the Effective Tensor Coefficient of the Medium for the Objects with Microinclusions. Engineering, 6, 101-112. doi: 10.4236/eng.2014.63014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Soukoulis, C.M. and Wegener, M. (2011) Past Achievements and Future Challenges in the Development of ThreeDimensional Photonic Metamaterials. Nature Photonics, 5, 523-530.
[2] Smith, D.R. and Kroll, N. (2000) Negative Refractive Index in Left-Handed Materials. Physical Review Letters, 85, 2933-2936. http://dx.doi.org/10.1103/PhysRevLett.85.2933
[3] Li, J. and Huang, Y. (2013) Introduction to Metamaterials. Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials, Springer, Berlin.
[4] Nédélec, J.-C. (1980) Mixed Finite Elements in R3. Numerische Mathematik, 35, 315-341.
http://dx.doi.org/10.1007/BF01396415
[5] Nédélec, J.-C. (1986) A New Family of Mixed Finite Elements in R3. Numerische Mathematik, 50, 57-81.
http://dx.doi.org/10.1007/BF01389668
[6] Lanteri, S. and Scheid, C. (2013) Convergence of a Discontinuous Galerkin Scheme for the Mixed Time-Domain Maxwell’s Equations in Dispersive Media. IMA Journal of Numerical Analysis, 33, 432-459.
[7] Hesthaven, J.S. and Warburton, T. (2004) High-Order Nodal Discontinuous Galerkin Methods for the Maxwell Eigenvalue Problem. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362, 493-524.
[8] Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C. and Schultz, S. (2001) Microwave Transmission through a Two-Dimensional, Isotropic, Left-Handed Metamaterial. Applied Physics Letters, 78, 489-491.
http://dx.doi.org/10.1063/1.1343489
[9] Castaneda, P.P. and Willis, J.R. (1995) The Effect of Spatial Distribution on the Effective Behavior of Composite Materials and Cracked Media. Journal of the Mechanics and Physics of Solids, 43, 1919-1951.
http://dx.doi.org/10.1016/0022-5096(95)00058-Q
[10] Hashin, Z. and Shtrikman, Sh. (1962) A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials. Journal of applied Physics, 33, 3125-3131.
http://dx.doi.org/10.1063/1.1728579
[11] Milton, G.W. and Kohn, R.V. (1988) Variational Bounds on the Effective Moduli of Anisotropic Composites. Journal of the Mechanics and Physics of Solids, 36, 597-629.
http://dx.doi.org/10.1016/0022-5096(88)90001-4
[12] Yakhno, V.G., Yakhno, T.M. and Kasap, M. (2006) A Novel Approach for Modeling and Simulation of Electromagnetic Waves in Anisotropic Dielectrics. International Journal of Solids and Structures, 43, 6261-6276.
http://dx.doi.org/10.1016/j.ijsolstr.2005.07.028
[13] Yin, Ch. and Weidelt, P. (1999) Geoelectrical Fields in a Layered Earth with Arbitrary Anisotropy. Geophysics, 64, 426-434. http://dx.doi.org/10.1190/1.1444547
[14] Yin, Ch. and Maurer, H.-M. (2001) Electromagnetic Induction in a Layered Earth with Arbitrary Anisotropy. Geophysics, 66, 1405-1416. http://dx.doi.org/10.1190/1.1487086
[15] Loseth, L.O. and Ursin, B. (2007) Electromagnetic Fields in Planarly Layered Anisotropic Media. Geophysical Journal International, 170, 44-80. http://dx.doi.org/10.1111/j.1365-246X.2007.03390.x
[16] Orlovskaya, N.V., Shurina, E.P. and Epov, M.I. (2006) Modeling of Electromagnetic Field in Anisotropic Electroconductive Media. Computational Technologies, 11, 99-116.
[17] Shtabel, N.V. and Shurina, E.P. (2013) Analysis of Vector Finite Element Approximations of Maxwell’s Equations in Anisotropic Media. Compensation Technologies, 18, 91-104.
[18] Hiptmair, R. and Zheng, W.-Y. (2009) Local Multigrid in H (curl). Journal of Computational Mathematics, 27, 573-603. http://dx.doi.org/10.4208/jcm.2009.27.5.012
[19] Hiptmair, R. (2001) Higher Order Whitney Forms. Progress in Electromagnetics Research, 32, 271-299.
http://dx.doi.org/10.2528/PIER00080111
[20] Monk, P. (2003) Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford.
http://dx.doi.org/10.1093/acprof:oso/9780198508885.001.0001
[21] Nechaev, O., Shurina, E. and Botchev, M. (2008) Multilevel Iterative Solvers for the Edge Finite Element Solution of the 3D Maxwell Equation. Computers & Mathematics with Applications, 55, 2346-2362.
http://dx.doi.org/10.1016/j.camwa.2007.11.003

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.