Share This Article:

Gravitational Waves: Present Status and Future Prospectus

Abstract Full-Text HTML Download Download as PDF (Size:2833KB) PP. 305-322
DOI: 10.4236/ns.2014.65033    6,003 Downloads   8,175 Views  

ABSTRACT

Remarkable progress has been made during recent years on the development of gravitational wave detectors. The review describes the present status and future prospectus of the gravitational wave astronomy. The main theme is to review the prominent long baseline detectors in operation around the world and proposed baseline and space-borne interferometers. Looking to the future, the major upgrades to the ground based detectors and new planned detectors will be completed over the coming years, which will create a network of detectors with the significantly improved sensitivity required to detect gravitational waves. Beyond this, the concept and design of possible future “third generation” gravitational-wave detectors will be discussed. Sources such as coalescing compact binary systems, neutron stars in low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Iqbal, N. and Monga, S. (2014) Gravitational Waves: Present Status and Future Prospectus. Natural Science, 6, 305-322. doi: 10.4236/ns.2014.65033.

References

[1] Taylor, J.H., Fowler, L.A. and McCulloch, P.M. (1979) Measurements of General Relativistic Effects in the Binary Pulsar PSR 1913+16. Nature, 277, 437-440. http://dx.doi.org/10.1038/277437a0
[2] Taylor, J.H. (1994) Binary Pulsar and Relativistic Gravity. Review of Modern Physics, 66, 711719.
http://dx.doi.org/10.1103/RevModPhys.66.711
[3] Hulse, R.A. and Taylor, J.H. (1974) A High Sensitivity Pulsar Survey. The Astrophysical Journal, 191, 59-61.
http://dx.doi.org/10.1086/181548
[4] Hulse, R.A. and Taylor, J.H. (1975) Discovery of a Pulsar in a Binary System. The Astrophysical Journal, 195, 51-53.
http://dx.doi.org/10.1086/181708
[5] Hulse, R.A. and Taylor, J.H. (1975) A Deep Sample of Pulsar and Their Spatial Extent in the Galaxy. The Astrophysical Journal, 201, 55-59. http://dx.doi.org/10.1086/181941
[6] Damour, T. and Esposito, F.G. (1996) Tensor-Scalar Gravity and Binary-Pulsar Experiments. Physical Review D, 54, 1474-1491. http://dx.doi.org/10.1103/PhysRevD.54.1474
[7] Damour, T. and Esposito, F.G. (1993) Nonperturbative Strong-Field Effects in Tensor-Scalar Theories of Gravitation. Physical Review Letters, 70, 2220-2223.
http://dx.doi.org/10.1103/PhysRevLett.70.2220
[8] Will, C.M. (1977) Gravitational Radiation from Binary Systems in Alternative Metric Theories of Gravity—Dipole Radiation and the Binary Pulsar. Astrophysical Journal, 214, 826-839.
http://dx.doi.org/10.1086/155313
[9] Krauss, L.M., Dodelson, S. and Meyer, S. (2010) Primordial Gravitational Waves and Cosmology. Science, 328, 989992. http://dx.doi.org/10.1126/science.1179541
[10] Weber, J. (1960) Detection and Generation of Gravitational Waves. Physical Review D, 117, 306-313.
http://dx.doi.org/10.1103/PhysRev.117.306
[11] Gertsenshtein, M.E. and Pustovoit, V.I. (1963) On the Detection of Low-Frequency Gravitational Waves. Soviet Physics-JETP, 16, 433-435.
[12] Abbott, B.P., Abbott, R., Acernese, R., Ajith, P., Allen, B., Alshourbagy, M., Amin, R.S., Anderson, S.B., et al. (2010) Searches for Gravitational Waves from Known Pulsars with Science Run 5 LIGO Data. The Astrophysical Journal, 713, 671-685. http://dx.doi.org/10.1088/0004-637X/713/1/671
[13] Ni, W.T. (2008) Astrod and Astrod i—Overview and Progress. International Journal of Modern Physics, 17, 921-940.
http://dx.doi.org/10.1142/S0218271808012619
[14] Ni, W.T. (2005) Empirical Foundations of the Relativistic Gravity. International Journal of Modern Physics D, 14, 901-921. http://dx.doi.org/10.1142/S0218271805007139
[15] Farmer, A.J. and Phinney, E.S. (2003) The Gravitational Wave Background from Cosmological Compact Binaries. Monthly Notices of the Royal Astronomical Society, 346, 1197-1214.
http://dx.doi.org/10.1111/j.1365-2966.2003.07176.x
[16] Armstrong, J.W., Estabrook, F.B. and Tinto, M. (1999) Time-Delay Interferometry for Space-Based Gravitational Wave Searches. Astrophysical Journal, 527, 814-826. http://dx.doi.org/10.1086/308110
[17] Cutler, C. (1998) Angular Resolution of the LISA Gravitational Wave Detector. Physical Review D, 57, 7089-7102.
http://dx.doi.org/10.1103/PhysRevD.57.7089
[18] Kawamura, S., Nakamura, T., Ando, M., Seto, N., Tsubono, N., Numata, K., Takahashi, R., Nagan, S., Ishikawa, T., Musha, M., Ueda, K., et al. (2006) The Japanese Space Gravitational Wave Antenna—DECIGO. Classical and Quantum Gravity, 23, 125-131. http://dx.doi.org/10.1088/0264-9381/23/8/S17
[19] Ni, W.T. (2005) Empirical Foundations of the Relativistic Gravity. International Journal of Modern Physics, 14, 901921. http://dx.doi.org/10.1142/S0218271805007139
[20] Ni, W.T., Hanns, S., Laemmerzahl, C., Mingyong, H., Chengming, L. and He, P.J. (2010) ASTROD Optimized for Gravitational Wave Detection: ASTROD-GW. 38th COSPAR Scientific Assembly, Bremen, 18-15 July 2010, p. 7.
[21] Aasi, J., Abadie, J., Abbott, B.P., Abbott, R., Abbott, T., et al. (2013) Directed Search for Continuous Gravitational Waves from the Galactic Center. Physical Review D, 88, 102002.
http://dx.doi.org/10.1103/PhysRevD.88.102002
[22] Belczynski, K., Kalogera, V. and Bulik, T. (2002) A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties. Astrophysical Journal, 572, 407-431.
http://dx.doi.org/10.1086/340304
[23] Abbott, B., Abbott, R., Adhikari, R., Ageev, A., Allen, B., Amin, R., Anderson, S.B., Anderson, W.G., Araya, M., Armandula, H., et al. (2004) Detector Description and Performance for the First Coincidence Observations between LIGO and GEO. Nuclear Instruments and Methods in Physics Research Section A, 517, 154-179.
http://dx.doi.org/10.1016/j.nima.2003.11.124
[24] Abbott, B., Abbott, R., Adhikari, R., Agresti, J., Ajith, P., Allen, B., Amin, R., Anderson, S.B., Anderson, W.G., Arain, M., et al. (2008) Search for Gravitational Waves from Binary Inspirals in S3 and S4 LIGO Data. Physical Review D, 77, 062002. http://dx.doi.org/10.1103/PhysRevD.77.062002
[25] Abbott, B., Abbott, R., Adhikari, R., Agresti, J., Ajith, P., Allen, B., Amin, R., Anderson, S.B., Anderson, W.G., Rain, M., Araya, M., et al. (2007) Search for Gravitational-Wave Bursts in LIGO Data from the Fourth Science Run. Classical and Quantum Gravity, 24, 5343-5369. http://dx.doi.org/10.1088/0264-9381/24/22/002
[26] Abbott, B., Abbott, R., Abbott, R., Gresti, J., Ajith, P., Allen, B., Amin, R., Anderson, S.B., Anderson, W.G., Arain, M., et al. (2007) Upper Limits on Gravitational Wave Emission from 78 Radio Pulsars. Physical Review D, 76, 042001.
http://dx.doi.org/10.1103/PhysRevD.76.042001
[27] Abbott, B., Abbott, R., Adhikari, R., Agresti, J., Ajith, P., Allen, B., Amin, R., Anderson, S.B., Anderson, W.G., Araya, M., Armandula, H., et al. (2007) Searching for Stochastic Background of Gravitational Waves with LIGO. The Astrophysical Journal, 659, 918. http://dx.doi.org/10.1086/511329
[28] Abbott, B., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., Amin, R., Anderson, S.B., Anderson, W.G., Arain, M.A., Araya, M., et al. (2008) First Joint Search for Gravitational-Wave Bursts in LIGO and GEO 600 Data. Classical and Quantum Gravity, 25, 245008. http://dx.doi.org/10.1088/0264-9381/25/24/245008
[29] Acernese, F., Amico, P., Al-Shourbagy, M., Aoudia, S., Avino, S., Babusci, D., Ballardin, G., Barillé, R., Barone, F., Barsotti, L., Barsuglia, M., et al. (2005) Status of Virgo. Classical and Quantum Gravity, 22, 869-880.
http://dx.doi.org/10.1088/0264-9381/22/18/S01
[30] Acernese, F., Amico, P., Alshourbagy, M., Antonucci, F., Aoudia, S., Avino, S., Babusci, D., Ballardin, G., Barone, F., Barsotti, L., Barsuglia, M., et al. (2006) The Status of Virgo. Classical and Quantum Gravity, 23, 635-690.
http://dx.doi.org/10.1088/0264-9381/23/19/S01
[31] Acernese, F., Amico, P., Alshourbagy, M., Antonucci, F., Aoudia, S., Astone, P., Avino, S., Babusci, D., Ballardin, G., Barone, F., Barsotti, L., et al. (2007) Status of Virgo Detector. Classical and Quantum Gravity, 24, 381-388.
http://dx.doi.org/10.1088/0264-9381/24/19/S01
[32] Abramovici, A., Althouse, W.E., Drever, R.W.P., Gursel, Y., Kawamura, S., Raab, F.J., Shoemaker, D., Sievers, L., spero, R.E., Thorne, K.S., et al. (1992) LIGO-The Laser Interferometer Gravitational-Wave Observatory. Science, 256, 325-333. http://dx.doi.org/10.1126/science.256.5055.325
[33] Bradaschia, C., del Fabbro, R., di Virgilio, A., Giazotto, A., Kautzky, H., Montelatici, V., Passuello, D., Brillet, A., Cregut, O., Hello, P., Man, C.N., et al.(1990) The VIRGO Project: A Wide Band Antenna for Gravitational Wave Detection. Nuclear Instruments and Methods in Physics Research Section A, 289, 518-525.
http://dx.doi.org/10.1016/0168-9002(90)91525-G
[34] Abadie, J., Abbott, B.P., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., Amador, C.E., Amin, R.S., Anderson, S., et al. (2011) Beating the Spin-Down Limit on Gravitational Wave Emission from the Vela Pulsar. The Astrophysical Journal, 737, 93-108. http://dx.doi.org/10.1088/0004-637X/737/2/93
[35] Ando, M., Arai, K., Takahashi, R., Heinzel, G., Kawamura, S., Tatsumi, D., Kanda, N., Tagoshi, H., Araya, A., Barton, M.A., et al. (2001) Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within Our Galaxy. Physical Review Letters, 86, 3950-3954.
http://dx.doi.org/10.1103/PhysRevLett.86.3950
[36] Willke, B., Aufmuth, P., Aulbert, C., Babak, S., Balasubramanian, R., Barr, B.W., Berukoff, S., Bose, S., Cagnoli, G., et al. (2002) The GEO 600 Gravitational Wave Detector. Classical and Quantum Gravity, 19, 1377-1387.
http://dx.doi.org/10.1088/0264-9381/19/7/321
[37] Smith, J.R., Allen, B., Aufmuth, P., Aulbert, C., Babak, S., Balasubramanian, R., Barr, B.W., Berukoff, S., Bunkowski, A., Cagnoli, G., et al. (2004) Commissioning, Characterization and Operation of the Dual-Recycled GEO 600. Classical and Quantum Gravity, 21, S1737-S1745.
http://dx.doi.org/10.1088/0264-9381/21/20/016
[38] Willke, B., Aufmuth, P., Aulbert, C., Babak, S., Balasubramanian, R., Barr, B.W., Berukoff, S., Cagnoli, G., Cantley, C.A., Casey, M.M., et al. (2004) Status of GEO 600. Classical and Quantum Gravity, 21, S417-S423.
http://dx.doi.org/10.1088/0264-9381/21/5/006
[39] Willke, B., Ajith, P., Allen, B., Aufmuth, P., Aulbert, C., Babak, S., Balasubramanian, R., Barr, B.W., Berukoff, S., Bunkowski, A., Cagnoli, G., et al. (2006) The GEO-HF Project. Classical and Quantum Gravity, 23, S207-S214.
http://dx.doi.org/10.1088/0264-9381/23/8/S26
[40] Hild, S., Grote, H., Degallaix, J., Chelkowski, S., Danzmann, K., Freise, A., Hewitson, M., Hough, J., Luck, H., Prijatelj, M., Strain, K.A., Smith, J.R. and Willke, B. (2009) DC-Readout of a Signal-Recycled Gravitational Wave Detector. Classical and Quantum Gravity, 26, Article ID: 055012. http://dx.doi.org/10.1088/0264-9381/26/5/055012
[41] Yamamoto, K., Uchiyama, T., Miyoki, S., Ohashi, M., Kuroda, K., Ishitsuka, H., Akutsu, T., Telada, S., Tomaru, T., Suzuki, T., Sato, N., et al. (2008) Current Status of the CLIO Project. Journal of Physics: Conference Series, 122, Article ID: 012002. http://dx.doi.org/10.1088/1742-6596/122/1/012002
[42] Akutsu, T., Ando, M., Haruyama, T., Kanda, N., Kuroda, K., Miyoki, S., Ohashi, M., Saito, Y., Sato, N., Shintomi, T., Suzuki, T., et al. (2008) Search for Continuous Gravitational Waves from PSR J0835-4510 Using CLIO Data. Classical and Quantum Gravity, 25, Article ID: 184013. http://dx.doi.org/10.1088/0264-9381/25/18/184013
[43] Danzmann, K. and the LISA Study Team (1996) LISA: Laser Interferometer Space Antenna for Gravitational Wave Measurements. Classical and Quantum Gravity, 13, 247-250. http://dx.doi.org/10.1088/0264-9381/13/11A/033
[44] Jennrich, O. (2009) LISA Technology and Instrumentation. Classical and Quantum Gravity, 26, Article ID: 153001.
http://dx.doi.org/10.1088/0264-9381/26/15/153001
[45] Johann, U.A., Ayre, M., Gath, P.F., Holota, W., Marenaci, P., Schulte, H.R., Weimer, P. and Weise, D. (2008) The European Space Agency’s LISA Mission Study: Status and Present Results. Journal of Physics: Conference Series, 122, Article ID: 012005.http://dx.doi.org/10.1088/1742-6596/122/1/012005
[46] Armano, M., Benedetti, M., Bogenstahl, J., Bortoluzzi, D., Bosetti, P., Brandt, N., Cavalleri, A., Ciani, G., Cristofolini, I., Cruise, A.M., et al. (2009) LISA Pathfinder: The Experiment and the Route to LISA. Classical and Quantum Gravity, 26, Article ID: 094001.
[47] Blair, D.G., Howell, E.J., Ju, L. and Zhao, C. (2012) Advanced Gravitational Wave Detectors. Cambridge University Press, Cambridge.
[48] Acernese, F., Amico, P., Arnaud, N., Arnault, C., Babusci, D., Ballardin, G., Barone, F., Barsuglia, M., Bellachia, F., Beney, J.L., et al. (2002) The Present Status of the VIRGO Central Interferometer. Classical and Quantum Gravity, 19, 1421-1428. http://dx.doi.org/10.1088/0264-9381/19/7/325
[49] Harry, G.M. (2010) Advanced LIGO: The Next Generation of Gravitational Wave Detectors. Classical and Quantum Gravity, 27, Article ID: 084006. http://dx.doi.org/10.1088/0264-9381/27/8/084006
[50] Abadie, J., Abbott, B.P., Abbott, R., Abernathy, M., Accadia, T., Acernese, F., Adam, C., Adhikari, R., Ajith, P., Allen, B., et al. (2010) Predictions for the Rates of Compact Binary Coalescences Observable by Ground Based Gravitational Wave Detectors. Classical and Quantum Gravity, 27, Article ID: 173001.
http://dx.doi.org/10.1088/0264-9381/27/17/173001
[51] Kopparapu, R.K., Hanna, C., Kalogera, V., Shaughnessy, R.O., Gonzalez, G., Brady, P.R. and Fairhurst, S. (2008) Host Galaxies Catalog Used in LIGO Searches for Compact Binary Coalescence Events. Astrophysical Journal, 675, 1459-1467. http://dx.doi.org/10.1086/527348
[52] Aasi, J., Abadie, J., Abbott, B.P., Abbott, R., Abbott, T.D., Bernathy, M.R., Adam, C., Adam, T., Addesso, P. and Adhikar, R.X. (2013) Enhanced Sensitivity of the LIGO Gravitational Wave Detector by Using Squeezed States of Light. Nature Photonics, 7, 613-619.
http://dx.doi.org/10.1038/nphoton.2013.177
[53] Miyoki, S. (2005) Large Scale Cryogenic Gravitational Wave Telescope. Nuclear Physics B, 138, 439-442.
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.101
[54] Ohashi, M. (2008) Status of LCGT and CLIO. Journal of Physics: Conference Series, 120, Article ID: 032008.
http://dx.doi.org/10.1088/1742-6596/120/3/032008
[55] Kuroda, K. (2010) Status of LCGT. Classical and Quantum Gravity, 27, Article ID: 084004.
http://dx.doi.org/10.1088/0264-9381/27/8/084004
[56] Uchiyama, T., Kuroda, K., Ohashi, M., Miyoki, S., Ishitsuka, H., Yamamoto, K., Hayakawa, H., Kasahara, K., Fujimoto, M.K., Kawamura, S., et al. (2004) Present Status of Large-Scale Cryogenic Gravitational Wave Telescope. Classical and Quantum Gravity, 21, 1161-1172.
http://dx.doi.org/10.1088/0264-9381/21/5/115
[57] Gair, J.R., Mandel, I., Millerand, M. and Volonteri, M. (2011) Exploring Intermediate and Massive Black-Hole Binaries with the Einstein Telescope. General Relativity and Gravitation, 43, 485-518.
http://dx.doi.org/10.1007/s10714-010-1104-3
[58] Amaro, S.P. and Santamaria, L. (2010) Detection of IMBHS with Ground-Based Gravitational Wave Observatories: A Biography of a Binary of Black Holes, from Birth to Death. Astrophysical Journal, 722, 1197-1206.
http://dx.doi.org/10.1088/0004-637X/722/2/1197
[59] Freise, A., Chelkowski, S., Hild, S., DelPozzo, W., Perreca, A. and Vecchio, A. (2009) Triple Michelson Interferometer for a Third-Generation Gravitational Wave Detector. Classical and Quantum Gravity, 26, Article ID: 085012.
http://dx.doi.org/10.1088/02649381/26/8/085012
[60] Allen, Z.A., Astone, P., Baggio, L., Busby, D., Bassan, M., Blair, D.G., Bonaldi, M., Bonifazi, P., Carelli, P. and Cerdonio, M. (2000) First Search for Gravitational Wave Bursts with a Network of Detectors. Physical Review Letters, 85, 50465050.http://dx.doi.org/10.1103/PhysRevLett.85.5046
[61] Sato, S., Kawamura, S., Ando, M., Nakamura, T., Tsubono, K., Araya, A., Funaki, I., Ioka, K., Kanda, N., Moriwaki, S., Musha, M., et al. (2009) DECIGO: The Japanese Space Gravitational Wave Antenna. Journal of Physics: Conference Series, 154, Article ID: 012040. http://dx.doi.org/10.1088/1742-6596/154/1/012040
[62] Kawamura, S., Ando, M., Seto, N., Sato, S., Nakamura, T., Tsubono, K., Kanda, N., Tanaka, T., Yokoyama, J., Funak, I., et al. (2011) The Japanese Space Gravitational Wave Antenna: DEECIGO. Classical and Quantum Gravity, 28, Article ID: 094011. http://dx.doi.org/10.1088/0264-9381/28/9/094011
[63] Ando, M., Kawamura, S., Sato, S., Nakamura, T., Tsubono, K., Araya, A., Funaki, I., Ioka, K., Kanda, N., Moriwaki, S., et al. (2009) DECIGO Pathfinder. Classical and Quantum Gravity, 26, Article ID: 094019.
http://dx.doi.org/10.1088/0264-9381/26/9/094019
[64] Crowder, J. and Cornish, N.J. (2005) Beyond LISA: Exploring Future Gravitational Wave Missions. Physical Review D, 72, Article ID: 083005. http://dx.doi.org/10.1103/PhysRevD.72.083005
[65] Harry, G.M., Fritschel, P., Shaddock, D.A., Folkner, W. and Phinney, E.S. (2006) Laser Interferometry for the Big Bang Observer. Classical and Quantum Gravity, 23, 4887-4894. http://dx.doi.org/10.1086/157110
[66] Cutler, C. and Holz, D.E. (2009) Ultrahigh Precision Cosmology from Gravitational Waves. Physical Review D, 80, Article ID: 104009. http://dx.doi.org/10.1103/PhysRevD.80.104009
[67] Ni, W.T. (2013) Dark Energy, Co-Evolution of Massive Black Holes with Galaxies, and ASTROD-GW. Advances in Space Research, 51, 525-534. http://dx.doi.org/10.1016/j.asr.2012.09.019
[68] Braxmaier, C., Dittus, H., Foulon, B., Goklu, E., Grimani, C., Guo, J., Herrmann, S., Lammerzahl, C., Ni, W.T., Peter, A., et al. (2012) Astrodynamical Space Test of Relativity Using Optical Devices I (ASTROD I)—A Class-M Fundamental Physics Mission Proposal for Cosmic Vision 2015-2022. Experimental Astronomy, 34, 181-201.
http://dx.doi.org/10.1007/s10686-011-9281-y
[69] Giacconi, R., Branduardi, G., Breil, U., Epstein, A., Fabricant, D., Feigelson, E., Forman, W., Gorenstein, P., Grindlay, J. and Gursky, H. (1979) The Ei/HEAO 2/ X-Ray Observatory. Astrophysical Journal, 230, 540-550.
http://dx.doi.org/10.1086/157110
[70] Mather, J.C., Hauser, M.G., Benne, L., Boggess, W., Cheng Jr., E.S., Eplee, R.E., Freudenreich, H.T., Isaacman, B., et al. (1991) Early Results from the Background Explorer (COBE). Advance in Space Research, 11, 181-191.
http://dx.doi.org/10.1016/0273-1177(91)90489-7

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.