[1]
|
Zhu, J.-K. (2002) Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology, 53, 247-73. http://dx.doi.org/10.1146/annurev.arplant.53.091401.143329
|
[2]
|
Shadchina, T. (2004) Effect of Combined Stress Caused by Drought and Soil Salinity on Photosynthesis and Fluorescence Induction Parameters in Leaves of Spring Wheat. Acta Physiologiae Plantarum A, 26, 290-291.
|
[3]
|
Stepien, P. and Klobus, G. (2005) Antioxidant Defense in the Leaves of C3 and C4 Plants under Salinity Stress. Physiologia Plantarum, 125, 31-40. http://dx.doi.org/10.1111/j.1399-3054.2005.00534.x
|
[4]
|
Stepien, P. and Klobus, G. (2006) Water Relations and Photosynthesis in Cucumis sativus L. Leaves under Salt Stress. Biologia Plantarum, 50, 610-616. http://dx.doi.org/10.1007/s10535-006-0096-z
|
[5]
|
Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J. and Zhu, J.-K. (2006) Methods and Concepts in Quantifying Resistance to Drought, Salt and Freezing, Abiotic Stresses That Affect Plant Water Status. Plant Journal, 45, 523-539. http://dx.doi.org/10.1111/j.1365-313X.2005.02593.x
|
[6]
|
Giles, K.L., Beardsell, M.F. and Cohen, D. (1974) Cellular and Ultrastructural Changes in Mesophyll and Bundle Sheath Cells of Maize in Response to Water Stress. Plant Physiology, 54, 208-212. http://dx.doi.org/10.1104/pp.54.2.208
|
[7]
|
Giles, K.L., Cohen, D. and Beardsell, M.F. (1976) Effect of Water Stress on the Ultrastructure of Leaf Cells of Sorghum bicolor. Plant Physiology, 57, 11-14. http://dx.doi.org/10.1104/pp.57.1.11
|
[8]
|
Freeman, T.P. and Duysen, M.E. (1975) The Effect of Imposed Water Stress on the Development and Ultrastructure of Wheat Chloroplasts. Protoplasma, 83, 131-145. http://dx.doi.org/10.1007/BF01289336
|
[9]
|
Mittelheuser, C.J. (1977) Rapid Utrastructural Recovery of Water Stressed Leaf Tissue. Z.Pflanzenphysiologie, 82, 458-461.
|
[10]
|
Maroti, I., Tuba, Z. and Csik, M. (1984) Changes of Chloroplast Ultrastructure and Carbohydrate Level in Festuca, Achillea and Sedum during Drought and After Recovery. Journal of Plant Physiology, 116, 1-10. http://dx.doi.org/10.1016/S0176-1617(84)80078-4
|
[11]
|
Geissler, N., Hussin, S. and Koyro, H.-W. (2009) Elevated Atmospheric CO2 Concentration Ameliorates Effects of NaCl Salinity on Photosynthesis and Leaf Structure of Aster tripolium L. Journal of Experimental Botany, 60, 137-151. http://dx.doi.org/10.1093/jxb/ern271
|
[12]
|
Naeem, M.S., Warusawitharana, H., Liu, H., Liu, D., Ahmad, R., Waraich, E.A., Xu, L. and Zhou, W. (2012) 5-Aminolevulenic Acid Alleviates the Salinity-Induced Changes in Brassica napus as Revealed by the Ultrastructural Study of Chloroplasts. Plant Physiology and Biochemistry, 57, 84-92. http://dx.doi.org/10.1016/j.plaphy.2012.05.018
|
[13]
|
Berlin, J., Quisenberry, J.E., Bailey, F., Woodworth, M. and McMichael, B.L. (1982) Effect of Water Stress on Cotton Leaves. I. An Electron Microscopic Stereological Study of the Palisade Cells. Plant Physiology, 70, 238-243. http://dx.doi.org/10.1104/pp.70.1.238
|
[14]
|
Kurkova, E.B. and Balnokin, Yu.V. (1994) Pinocytosis and Its Possible Role in Ion Transport in the Salt-Accumulating Organs of Halophytes. Russian Journal of Plant Physiology, 41, 507-511.
|
[15]
|
Koyro, H.W. (1977) Ultrastructural and Physiological Changes in Root Cells of Sorghum Plants (Sorghum bicolor × S. sudanensis cv. Sweet Sioux) Induced by NaCl. Journal of Experimental Botany, 48, 693-706. http://dx.doi.org/10.1093/jxb/48.3.693
|
[16]
|
Scippa, G.S., Michele, M.D., Onelli, E., Patrignani, G., Chiatante, D. and Bray, E.A. (2004) The Histone-Like Protein H1-S and the Response of Tomato Leaves to Water Deficit. Journal of Experimental Botany, 55, 99-109. http://dx.doi.org/10.1093/jxb/erh022
|
[17]
|
Ivanov, A.A. (2010) Effect of Light Conditions of Wheat Growing on Sensitivity of Photosynthetic Machinery to Salt Stress. Russian Journal of Plant Physiology, 57, 770-777. http://dx.doi.org/10.1134/S102144371006004X
|
[18]
|
Ivanov, A.A. (2010) Functional Changes of Photosynthetic Apparatus in Wheat Plants at Water Stress against the Background of NaCl. Agricultural Biology, 3, 88-93.
|
[19]
|
Pardossi, A., Vernieri, P. and Tognoni, F. (1992) Involvement of Abscisic Acid in Regulating Water Status in Phaseolus vulgaris L. during Chilling. Plant Physiology, 100, 1243-1250. http://dx.doi.org/10.1104/pp.100.3.1243
|
[20]
|
Bil, K.Ya., Fomina, I.R. and Tsenova, E.N. (1985) Effects of Nitrogen Nutrition on Photosynthetic Enzyme Activities, Type of Photosynthates and Photosystem 2 Activity in Maize Leaves. Photosynthetica, 19, 216-220.
|
[21]
|
Munns, R., Hare, R.A., James, R.A. and Rebetzke, G.J. (2000) Genetic Variation for Improving the Salt Tolerance of Durum Wheat. Australian Journal of Agricultural Research, 51, 69-74. http://dx.doi.org/10.1071/AR99057
|
[22]
|
Semenova, G. (2002) The Thylakoid Membrane in a Wide pH Range. Journal of Plant Physiology, 159, 613-625. http://dx.doi.org/10.1078/0176-1617-0632
|
[23]
|
Stroganov, B.P., Kabanov, V.V. and Rakova, N.I. (1970) Features of Protein and Nucleic Acid Metabolism during Formative Changes in Plants under Salinization Conditions. Soviet Journal of Plant Physiology, 17, 394-401.
|
[24]
|
Jennings, D.H. (1976) The Effects of Sodium Chloride on Higher Plants. Biological Reviews, 51, 453-486. http://dx.doi.org/10.1111/j.1469-185X.1976.tb01064.x
|
[25]
|
Munns, R., James, R.A. and Lauchli, A. (2006) Approaches to Increasing the Salt Tolerance of Wheat and Other Cereals. Journal of Experimental Botany, 57, 1025-1043. http://dx.doi.org/10.1093/jxb/erj100
|
[26]
|
Munns, R. and Tester, M. (2008) Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59, 651-681. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092911
|
[27]
|
Davenport, R., James, R.A., Zakrisson-Plogander, A., Tester, M. and Munns, R. (2005) Control of Sodium Transport in Durum Wheat. Plant Physiology, 137, 807-818. http://dx.doi.org/10.1104/pp.104.057307
|
[28]
|
Orlova, Yu.V., Myasoedov, N.A., Kirichenko, E.B. and Balnokin, Yu.V. (2009) Contributions of Inorganic Ions, Soluble Carbohydrates, and Multiatomic Alcohols to Water Homeostasis in Artemisia lerchiana and A. pauciflora. Russian Journal of Plant Physiology, 56, 200-210. http://dx.doi.org/10.1134/S1021443709020083
|
[29]
|
Kim, J.-M., To, T.K., Nishioka, T. and Seki, M. (2010) Chromatin Regulation Functions in Plant Abiotic Stress Responses. Plan, Cell and Environment, 33, 604-611. http://dx.doi.org/10.1111/j.1365-3040.2009.02076.x
|
[30]
|
Ohlenbusch, H.H., Olivera, B.M., Tuan, D. and Davidson, N. (1967) Selective Dissociation of Histones from Calf Thymus Nucleoprotein. Journal of Molecular Biology, 25, 299-315. http://dx.doi.org/10.1016/0022-2836(67)90143-X
|
[31]
|
Katsuhara, M. and Kawasaki, T. (1996) Salt Stress Induced Nuclear and DNA Degradation in Meristematic Cells of Barley Roots. Plant and Cell Physiology, 37, 169-173. http://dx.doi.org/10.1093/oxfordjournals.pcp.a028928
|
[32]
|
Werker, E., Lerner, H.R., Weimberg, R. and Poljakoff-Mayber, A. (1983) Structural Changes Occurring in Nuclei of Barley Root Cells in Response to a Combined Effect of Salinity and Ageing. American Journal of Botany, 70, 222-225. http://dx.doi.org/10.2307/2443267
|
[33]
|
Aleksandrushkina, N.I., Zamyatnina, V.A., Bakeeva, L.E., Seredina, A.V., Smirnova, E.G., Yaguzhinsky, L.S. and Vanyushin, B.F. (2004) Apoptosis in Wheat Seedlings Grown under Normal Daylight. Biochemistry—Moscow, 69, 285-294.
|
[34]
|
Slusarczyk, J.S., Prymakowska-Bosak, M., Przewloka, M., Jerzmanowski, A. and Kuras, M. (1999) Ultrastructural Organization of Leaves of Transgenic Tobacco Overexpressing Histone H1 from Arabidopsis thaliana. Annual Botany, 84, 329-335. http://dx.doi.org/10.1006/anbo.1999.0925
|
[35]
|
Aleksandrushkina, N.I., Seredina, A.V. and Vanyushin, B.F. (2009) Endonuclease Activities in the Coleoptile and the First Leaf of Developing Etiolated Wheat Seedlings. Russian Journal of Plant Physiology, 56, 154-163. http://dx.doi.org/10.1134/S1021443709020022
|