Inheritance of AFLP markers and genetic linkage analysis in two full-sib families of the marine shrimp Litopenaeus vannamei (Crustacea, Decapoda)


The cultivation of the marine species of shrimp Litopenaeus vannamei has emerged as one of the segments that best develop in the Brazilian aquaculture, representing the agribusiness that grew the most in recent years. Regarding the economic importance of the farming of this species in Brazil, further studies on genetic improvement were conducted. A F2 segregating population consisting of 192 samples for each G1 and G2 families, from crossing inbred lines was used for the studies performed in the present work. The genetic linkage analysis was based on polymorphic markers derived from nine AFLP (Amplified Fragment Length Polymorphism) primers. Fourteen genetic linkage groups including 103 segregating polymorphic markers were constructed covering350 cMfor G1 and four genetic linkage groups including 59 markers were constructed covering300 cMfor G2. Simple marker analyses were performed among individuals evaluated phenotypically, finding markers linked to genes that may be potentially important and useful to assess characteristics of economic importance for traits related to weight and the disease IMN (idiopathic muscle necrosis). The statistical model including markers explained major proportion of phenotypic characteristic weight in relation to disease incidence IMN.

Share and Cite:

Gonçalves, M. , Regitano, L. , Cruz, C. , Salgado, C. , Freitas, P. , Rocha, J. , Teixeira, A. and Galetti-Junior, P. (2014) Inheritance of AFLP markers and genetic linkage analysis in two full-sib families of the marine shrimp Litopenaeus vannamei (Crustacea, Decapoda). Advances in Bioscience and Biotechnology, 5, 273-281. doi: 10.4236/abb.2014.53034.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Benzie, J.A.H. (2000) Population genetic structure in penaeid prawns. Aquaculture Research, 31, 95-119.
[2] MAPA/SARC/DPA (2001) Plataforma Tecnológica do camarão marinho cultivado: seguimento de mercado. Ministério da Agricultura, Pecuária e Abastecimento. Departamento de Pesca e Aqüicultura—Brasília: MAPA/SARC/ DPA, CNPq, ABCC, 276 p.
[3] Gjedrem, T., Robinson, N. and Rye, M. (2012) The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture, 350-353, 117-129.
[4] Moore, S.S., Whan, V., Davis, G.P., Byrne, K., Hetzel, D.J.S. and Preston, N. (1999) The development and application of genetic markers for the kuruma prawn Penaeus japonicus. Aquaculture, 173, 19-32.
[5] Li, Y., Byrne, K., Emmanuela, M., Whan, V., Moore, S., Keys, S., Crocos, P., Preston, N. and Lehnert S. (2003) Genetic mapping of the Kuruma Penaeus japonicus using AFLP markers. Aquaculture, 219, 143-156.
[6] Staelens, J., Rombaut, D., Vercauteren, I., Argue, B., Benzie, J. and Vuylsteke, M. (2008) High-density linkage maps and sex-linked markers for the black tiger shrimp (Penaeus monodon). Genetics, 179, 917-925.
[7] Li, Z., Li, J., Wang, Q., He, Y. and Liu, P. (2006) AFLPbased genetic linkage map of marine shrimp Penaeus (Fenneropenaeus) chinensis. Aquaculture, 261, 463-472.
[8] Pérez, F., Erazo, C., Zhinaula, M., Volckaert, F. and Calderón, J. (2004) A sex-specific linkage map of the white shrimp Penaeus (Litopenaeus) vannamei based on AFLP markers. Aquaculture, 242, 105-118.
[9] Zhang, L., Yang, C., Yang, Z., Li, L., Zhang, X., Zhang, Q. and Xiang, J. (2007) A genetic linkage map of Pacific white shrimp (Litopenaeus vannamei): Sex-linked microsatellite markers and high recombination rates. Genetica, 131, 37-49.
[10] Du, Z.Q., Ciobanu, D.C., Onteru, S.K., Gorbach, D., Mileham, A.J., Jaramillo, G. and Rothschild, M.F. (2009) A gene-based SNP linkage map for pacific white shrimp, Litopenaeus vannamei. Animal Genetics, 41, 286-294.
[11] Lynch, M. and Welsh, B. (1988) Genetics and analysis of quantitatie traits. Sinauer associates, Massachussetts.
[12] Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407-4414.
[13] Gonçalves, M.M., Lemos, M.V.F., Galetti Jr., P.M., Freitas, P.D. and Furtado Neto, M.A.A. (2005) Fluorescent amplified fragment length polymorphism (fAFLP) analyses and genetic diversity in Litopenaeus vannamei (Penaeidae). Genetics and Molecular Biology, 28, 267-270.
[14] Rocha, J.L., Galetti, P., Guerrelhas, A.C., Blott, S., Plastow, G., Ciobanu, D. and Van der Steen, H. (2005) Microsatellite-based assessment of genetic diversity and variability in a commercial Brazilian shrimp breeding program. Proceedings of the Aquaculture America 2005 Meeting, New Orleans, Louisiana, USA, p. 68 (abstract).
[15] Aljanabi, S.M. and Martinez, I. (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCRbased techniques. Nucleic Acids Research, 25, 4692-4693.
[16] Kocher, T.D., Lee, W.-J., Sobolewska, H., Penman, D. and Mcandrew, B. (1998) A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics, 148, 1225-1232.
[17] Applied Biosystems—PE (1997) AFLP Plant Mapping Protocol, 45p.
[18] Cruz, C.D. and Schuster, I. (2006) GQMOL: Application to computational analysis of molecular data and their associations with quantitative traits. Version 2012.
[19] Kosambi, D.D. (1944) The estimation of map distances from recombination values. Annals of Eugenics, 12, 172-175.
[20] Vogl, C. and Xu, S. (2000) Multipoint mapping of viability and segregation distorting loci using molecular markers. Genetics Society of America, 155, 1439-1447.
[21] Ribeiro, A.O., Bearzoti, E. and Sáfadi, T. (2005) QTL mapping of Poisson traits: A simulation study. Crop Breeding and Applied Biotechnology, 5, 310-317.
[22] Ramos, R. (1997) Chromosome studies on the marine shrimps Penaeus vannamei and P. californiensis (Decapoda). Journal of Crustacean Biology, 17, 666-673.
[23] Darvasi, A., Weinreb, A., Minke, V., Weller, J.I. and Soller, M. (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics, 134, 943-951.
[24] Jackson, T.R., Ferguson, M.M., Danzmann, R.G., Fishback, A.G. and Ihssen, P.E., O’Connell, M. and Crease, T.J. (1998) Identification of two QTL influencing upper temperature tolerance in three rainbow trout (Oncorhynchus mykiss) half-sib families. Heredity, 80, 143-151.
[25] Danzmann, R.G., Jackson, T.R. and Ferguson, M. (1999) Epistasis in allelic expression at upper temperature tolerance QTL in rainbow trout. Aquaculture, 173, 45-58.
[26] Sakamoto, T., Danzmann, R.G., Okamoto, N., Ferguson, M.M. and Ihssen, P.E. (1999) Linkage analysis of quantitative trait loci associated with spawning time in rainbow trout (Oncorhynchus mykiss). Aquaculture, 173, 33-43.
[27] Robison, B.D., Wheeler, P.A., Sundin, K., Sikka, P. and Thorgaard, G.H. (2001) Composite interval mapping reveals a major locus influencing embryonic development rate in rainbow trout (Oncorhynchus mykiss). Journal of Heredity, 92, 16-22.
[28] Perry, G.M., Danzmann, R.G., Ferguson, M.M. and Gibson, J.P. (2001) Quantitative trait loci for upper thermal tolerance in outbred strains of rainbow trout (Oncorhynchus mykiss). Heredity, 86, 333-341.
[29] Ozaki, A., Sakamoto, T., Khoo, S., Nakamura, K., Coimbra, M.R., Akutsu, T. and Okamoto, N. (2001) Quantitative trait loci (QTL) associate with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss). Heredity, 86, 333-341.
[30] Shirak, A., Palti, Y., Cnaani, A., Korol, A., Hulata, G., Ron, M. and Avtalion, R.R. (2002) Association between loci with deleterious alleles and distorted sex ratios in an inbred line of tilapia (Oreochromis aureus). Journal of Heredity, 93, 270-276.
[31] Reid, D.P., Szanto, A., Glebe, B., Danzmann, R.G. and Ferguson, M.M. (2005) QTL for body weight and condition factor in Atlantic salmon (Salmo salar): Comparative analysis with rainbow trout (Oncorhynchus mykiss) and Arctic charr (Salvelinus alpinus). Heredity, 94, 166-172.
[32] Sánchez-Molano, E., Cerna, A., Toro, M.A., Bouza, C., Hermida, M., Pardo, B.G., Cabaleiro, S., Fernández, J. and Martinez, P. (2011) Detection of growth-related QTL in turbot (Scophthalmus maximus). BMC Genomics, 12, 473.
[33] Boulton, K., Massault, C., Houston, R.D., Koning, D.J., Haley, C.S., Bovenhuis, H., Batargias, C., Canário, A.V.M., Kotoulas, G. and Tsigenopoulos, C.S. (2011) QTL affecting morphometric traits and stress response in the gilthead seabream (Sparus aurata). Aquaculture, 319, 58-66.
[34] Drew, R.E., Schwabl, H., Wheeler, P.A. and Thorgaard, G.H. (2007) Detection of QTL influencing cortisol levels in rainbow trout (Oncorhynchus mykiss). Aquaculture, 272, S183-S194.
[35] Lyons, R.E., Dierens, L., Preston, N.P., Crocos, P., Coman, G. and Li, Y. (2007) Identification and characterization of QTL markers for growth traits in kuruma shrimp P. japonicus. Aquaculture, 272, S284-S285.
[36] Dong, S., Kong, J., Meng, X., Zhang, Q., Zhang, T. and Wang, R. (2008) Microsatellite DNA markers associated with resistance to WSSV in Penaeus (Fenneropenaeus) chinensis. Aquaculture, 282, 138-141.
[37] Tian, Y., Kong, J. and Luan, S. (2008) Estimation of genetic Parameters for Growth traits of Chinese shrimp Fenneropenaeus chinensis. Marine Fisheries Research, 29, 1-6.
[38] Borém, A. and Caixeta, E.T. (2009) Marcadores moleculares. 2nd Edition. Independent Production, Viçosa.
[39] Broman, K.W. (2001) Review of statistical methods for QTL mapping in experimental crosses. Reprinted from Lab Animal, 30, 44-52.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.