Is the kinematics of special relativity incomplete?
Ernst Karl Kunst
Im Spicher Garten 5, K?nigswinter, Germany.
DOI: 10.4236/ns.2014.64027   PDF   HTML     4,481 Downloads   6,324 Views   Citations

Abstract

A thorough analysis of composite inertial motion (relativistic sum) within the framework of special relativity leads to the conclusion that every translational motion must be the symmetrically composite relativistic sum of a finite number of quanta of velocity. It is shown that the resulting spacetime geometry is Gaussian and the four-vector calculus to have its roots in the complex-number algebra. Furthermore, this results in superluminality of signals travelling at or nearly at the canonical velocity of light between rest frames even if resting to each other.

Share and Cite:

Kunst, E. (2014) Is the kinematics of special relativity incomplete?. Natural Science, 6, 226-247. doi: 10.4236/ns.2014.64027.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Gezari, D.Y. (2009) Lunar laser ranging test of the invariance of c. General Physics, arXiv: 0912.3934.
[2] The OPERA Collaboration (2011) Measurement of the neutrino velocity with the OPERA detector in the LNGS beam. High Energy Physics-Experiment, arXiv: 1109.4897
[3] The ICARUS Collaboration (2012) Measurement of the neutrino velocity with the ICARUS detector at the LNGS beam. High Energy Physics-Experiment, arXiv: 1203.3433.
[4] For the LVD Collaboration and the OPERA Collaboration (2012) Determination of a time-shift in the OPERA set-up using high energy horizontal muons in the LVD and OPERA detectors. High Energy Physics-Experiment, arXiv: 1206.2488v1.
[5] Zichichi, A. (2012) Time-shift in the OPERA set-up: Proof against superluminal neutrinos without the need of knowing the CERN-LNGS distance and Reminiscences on the origin of the Gran Sasso Lab, of the 3rd neutrino and of the “Terano Anomaly”. High Energy Physics-Experiment, arXiv: 1206.2840v1.
[6] Migliazzo, J.M., et al. (2002) Proper motion measurements of pulsar B 1951+32 in the supernova remnant CTB 80. The Astrophysical Journal, 567, L141-L144.
http://dx.doi.org/10.1086/340002
[7] Nugent, R.L. (1998) New Measurements of the expansion of the crab nebula. Publications of the Astronomical Society of the Pacific, 110, 831-836.
http://dx.doi.org/10.1103/PhysRevLett.34.335
[8] Hawkins, M.R.S. (2010) On time dilation in quasar light curves. Cosmology and Extragalactic Astrophysics, arXiv: 1004.1824v1.
[9] Goldhaber, G., et al. (1996) Observation of cosmological time dilation using type Ia supernovae as clocks. Astrophysics, arXiv: 9602124.
[10] Goldhaber, G., et al. (2001) Timescale stretch parametrization of type Ia supernovae B-band light curves. Astrophysics, arXiv: 0104382.
[11] Foley, R.J., et al. (2005) A definitive measurement of true dilation in the spectral evolution of the moderate-redshift type Ia supernova 1997ex. Astrophysics, arXiv: 0504481v1.
[12] Jenkins, J.H., et al. (2008) Evidence for correlations between nuclear decay rates and earth-sun distance. Astrophysics, arXiv: 0808.3283.
[13] Jenkins, J.H., et al. (2012) Additional evidence for solar influence on nuclear decay rates. Nuclear Experiment, arXiv: 1207.5783v1.
[14] Fernandez-Martinez, E. and Mahbubani, R. (2012) The Gran Sasso muon puzzle. High Energy Astrophysical Phenomena, arXiv:1204.5180v2.
[15] Amaldi, U. (1973) Protron-protron interactions at high energies. Scientific American, 43.
[16] Bernard, D., et al. (1987) The real part of the protronantiprotron elastic scattering amplitude at the centre of mass energy of 546 GeV. Physics Letters B, 198, 583-589.
http://dx.doi.org/10.1016/0370-2693(87)90922-1
[17] The TOTEM Collaboration, et al., (2011) First measurement of the total protron-protron cross-section at the LHC energy of . EPL (Europhysics Letters), 96, 21002. http://dx.doi.org/10.1209/0295-5075/96/21002
[18] Einstein, A. (1905) Zur elektrodynamik bewegter korper (On the electrodynamics of moving bodies). Annalen der Physik, 17, 906.
[19] Einstein, A. (1905) Zur elektrodynamik bewegter korper (On the electrodynamics of moving bodies). Annalen der Physik, 17, 895-898.
[20] Einstein, A. (1905) Zur elektrodynamik bewegter korper (On the electrodynamics of moving bodies). Annalen der Physik, 17, 903.
[21] Einstein, A. (1907) über das relativitatsprinzip und die aus demselben gezogenen folgerungen (On the principle of relativity and the conclusions derivated from it). Jahrbuch der Radioaktivitat und Elektronik, 4, 429-430
[22] Weyl, H. (1924) Was ist materie (What is matter)? Springer Verlag, Berlin, 19.
[23] Michelson, A.A. and Morley, E.W. (1887) On the relative motion of the earth and the luminiferous aether. Philosophical Magazine Series 5, 24, 449-463.
http://dx.doi.org/10.1080/14786448708628130
[24] Caccianiga, B., et al. (2012) GPS-based CERN-LNGS time link for Borexino. Instrumentation and Detectors, arXiv: 1207.0591v1.
[25] Guiragossiam, Z., et al. (1975) Relative velocity measurements of electrons and gamma rays at 15 GeV. Physical Review Letters, 34, 335.
http://dx.doi.org/10.1103/PhysRevLett.34.335
[26] Ma, B.-Q. (2011) The phantom of the OPERA: Superluminal neutrinos. High Energy Physics-Phenomenology, arXiv: 1111.7050.
[27] Cohen, A.G. and Glashow, S.L. (2011) New constraints on neutrino velocities. High Energy Physics-Phenomenology, arXiv: 1109.6562.
[28] The ICARUS Collaboration (2011) A search for the analogue of Cherenkov radiation by high energy neutrinos at the superluminal speeds in ICARUS. High Energy Physics-Experiment, arXiv: 1110.3763.
[29] Breakstone, A., et al. (1984) A measurement of pp and pp elastic scattering at ISR energies. Nuclear Physics B, 248, 253-260.
http://dx.doi.org/10.1016/0550-3213(84)90595-9
[30] CERN (1990) CERN Courier May, 14.
[31] Amos, N.A., et al. (1990) Antiprotron-protron elastic scattering at from |t| = 0.034 to 0.65 (GeV/c)2. Physics Letters B, 247, 127-130.
http://dx.doi.org/10.1016/0370-2693(90)91060-O
[32] Amos, N.A., et al., (1989) Measurement of the pp total cross-section at . Physical Review Letters, 63, 2784. http://dx.doi.org/10.1103/PhysRevLett.63.2784
[33] The Pierre Auger Collaboration (2012) Measurement of the protron-air cross-section at with the Pierre Auger Observatory. High Energy Physics-Experiment, arXiv: 1208.1520v2.
[34] CERN (1987) The nuclear beam programme (EMU 08). Annual Report II, 32.
[35] Karol, P.J. (1984) Relativistic projectile fragment interactions: Anomolons. Science, 226, 1425-1427.
http://dx.doi.org/10.1126/science.226.4681.1425
[36] Antchev, G., et al. (TOTEM Collaboration) (2013) Luminosity-independent measurement of the protron-protron total cross-section at . Physical Review Letters, 111, 8 p.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.