Share This Article:

Symmetry and relativity: From classical mechanics to modern particle physics

Abstract Full-Text HTML XML Download Download as PDF (Size:135KB) PP. 191-197
DOI: 10.4236/ns.2014.64023    4,081 Downloads   5,576 Views  
Author(s)    Leave a comment

ABSTRACT

The aim of this review is to highlighte the common aspects between Symmetry in Physics and the Relativity Theory, particularly Special Relativity. After a brief historical introduction, emphasis is put on the physical foundations of Relativity Theory and its essential role in the clarification of many issues related to fundamental symmetries. Their different connections will be shown from Classical Mechanics to Modern Particle Physics.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Ajaltouni, Z. (2014) Symmetry and relativity: From classical mechanics to modern particle physics. Natural Science, 6, 191-197. doi: 10.4236/ns.2014.64023.

References

[1] Curie, P. (1894) Symmetry in electric and magnetic phenomena (Sur les Symétries des phénomènes électriques et magnétiques). Journal de Physique, série III, t. III.
[2] Weyl, H. (1964) Symmetry and mathematics (Symétries et Mathématiques Modernes). Flammarion.
[3] Einstein, A. (1905) On the electrodynamics of moving bodies (English version). Annalen der Physik XVII.
[4] Lorentz, A.H. (1904) Electromagnetic phenomena (English version). Proceedings of the Academy of Sciences of Amsterdam, 6.
[5] Minkowski, H. (1908) Space and time. Address delivered at the 80th Assembly of German Natural Scientists and Physicians, Cologne.
[6] Landau-Lifschitz (1994) The classical theory of fields. 4th Revised English Edition, Pergamon.
[7] Einstein, A. (1905) Does the Inertia of a body depend upon its Energy content. Annalen der Physik XVII.
[8] Einstein, A. (1922) The meaning of relativity. Lectures delivered at Princeton University, 5th Edition, Princeton University Press, Princeton.
[9] Wigner, E. (1959) Group theory and its applications to the quantum mechanics of atomic spectra (English version). Academic Press Inc., New York.
[10] Dirac, P.A.M. (1984) The principles of quantum mechanics. 4th Edition Revised.
[11] Einstein, A. (1905) Point de vue heuristique concernant la production et la transformation de la Lumière (French version). Annalen der Physik, XVII, 132-148.
http://dx.doi.org/10.1002/andp.19053220607
[12] De Broglie, L. (1930) Introduction to wave mechanics (Introduction? L’étude de la M? canique Ondulatoire). Lectures given at the Henri Poincare Institute, Masson Editions.
[13] Messiah, A. (1995) Quantum Mechanics I (Mécanique Quantique. Tome I). Masson Editions.
[14] Messiah, A. (1995) Quantum Mechanics II [Mécanique Quantique. Tome II). Masson Editions.
[15] Dirac, P. (1928) Quantum Theory of the Electron I and II. Proceedings of Royal Society, London, A117, 610 and A118, 351. http://dx.doi.org/10.1098/rspa.1928.0056
[16] Dirac, P. (1934) Théorie du Positron (published in French). Rapport du Conseil Solvay de Physique, Structure et Propriétés du Noyau Atomique, 20.
[17] Anderson, C.D. (1933) The positive electron. Physical Review, 43, 491.
http://dx.doi.org/10.1103/PhysRev.43.491
[18] Cahn, R.N. and Goldhaber, G. (1989) The experimental foundations of particle physics. Cambridge University Press, Cambridge.
[19] Schwinger, J. (1958) Selected papers on quantum electrodynamics. Dover Publications.
[20] Wigner, E. (1939) On unitary representations of the inhomogenuous lorentz group. Annals of Mathematics, 40, 39. http://dx.doi.org/10.2307/1968551
[21] Wigner, E. (1959) Group theory and its applications to the quantum mechanics of atomic spectra (English version). Academic Press Inc., New York. Chapters 18 and 26.
[22] Lee, T.D. and Yang C.N. (1956) Question on parity conservation in weak interactions. Physical Review, 102, 290.
http://dx.doi.org/10.1103/PhysRev.102.290
[23] Wu, C.S. (1957) Experimental tests of parity conservation in beta decay. Physical Review, 105, 1413.
http://dx.doi.org/10.1103/PhysRev.105.1413
[24] Garwin, R.L., Lederman, L.M. and Weinrich, M. (1957) Observation of the failure of conservation of parity and charge conjugation in meson decays. Physical Review, 105, 1415.
http://dx.doi.org/10.1103/PhysRev.105.1415
[25] Landau, L.D. (1957) Conservation laws in weak interactions. Journal of Experimental and Theoretical Physics, 32, 405-406.
[26] Christenson, J.H. and Cronin, J.W. (1964) Evidence for the 2π decay of the meson. Physical Review Letters, 13, 138. http://dx.doi.org/10.1103/PhysRevLett.13.138
[27] Wigner, E. (1964) Symmetry and conservation laws. Physics Today, 17, 34-40.
http://dx.doi.org/10.1063/1.3051467
[28] Several authors have postulated the CPT theorem by similar approaches. The pioneering one was the paper of G. Lüders (1957) Proof of the TCP theorem. Annals of Physics, 2, 1-15.
[29] Lee, T.D., Oehme, R. and Yang, C.N. (1957) Remarks on possible noninvariance under time reversal and charge conjugation. Physical Review, 106, 340.
http://dx.doi.org/10.1103/PhysRev.106.340
[30] Yang, C.N. and Mills, R.L. (1954) Conservation of isotopic spin and isotopic gauge invariance. Physical Review, 96, 191. http://dx.doi.org/10.1103/PhysRev.96.191
[31] Gellmann, M. (2013) The quark model. International Journal of Modern Physics A, 28, 1330016.
[32] Greenberg, O.W. (1964) Spin and unitary-spin independence in a paraquark model of baryons and mesons. Physical Review Letters, 13, 598.
[33] Lichtenberg, D.B. (1970) Unitary symmetry and elementary particles. Academic Press, New-York.
[34] Weinberg S. (1980) Conceptual foundations of the unified theory of weak and electromagnetic interactions. Reviews of Modern Physics, 52, 515.
[35] Abdus, S. (1980) Gauge unification of fundamental forces. Reviews of Modern Physics, 52, 525.
[36] Glashow, S.L. (1980) Towards a unified theory: Threads in tapestry. Reviews of Modern Physics, 52, 539.
[37] For a clear and concise introduction to the Standard Model, one can consult the excellent book of C. Quigg (1983) Gauge Theories of the Strong, Weak and Electromagnetic Interactions. Frontiers in Physics.
[38] Perl, M.L. (1975) Evidence for anomalous lepton production in annihilation. Physical Review Letters, 35, 1489.
[39] Brandelik, R. (1978) Measurement of Tau decay modes and a precise determination of the mass. Physical Letter B, 73, 109.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.