[1]
|
BP. Statistical Review of World Energy, 2005.
|
[2]
|
J. L. Johnson, “Kinetics of Coal Gasification: A Compilation of Research,” John Wiley and Sons, New York, 1979, p. 324.
|
[3]
|
A. Linares-Solano, O. P. Mahajan, L. Philip and P. L. Walker, “Reactivity of Heat-treated Coals in Steam,” Fuel, Vol. 58, No. 5, 1979, pp. 327-332.
http://dx.doi.org/10.1016/0016-2361(79)90148-0
|
[4]
|
L. Philip, P. L. Walker, S. Matsumoto, T. Hanzawa, T. Muira and I. M. K. Ismail, “Catalysis of Gasification of Coal-Derived Cokes and Chars,” Fuel, Vol. 62, No. 2, 1983, pp. 140-149.
http://dx.doi.org/10.1016/0016-2361(83)90186-2
|
[5]
|
M. Karthikeyan, Z. H. Wu and A. S. Mujumdar, “Low- Rank Coal Dry Technologies-Current Status and New Developments,” Dry Technology, Vol. 27, No. 3, 2009, pp. 403-415.
http://dx.doi.org/10.1080/07373930802683005
|
[6]
|
US Department of Energy/NETL, “Cost and Performance Baseline for Fossil Energy Plants Volume 3a: Low Rank Coal to Electricity: IGCC Cases,” 2011.
|
[7]
|
D. L. Smoot and P. J. Smith, “Coal Combustion and Gasificatio,” Plenum Press, 1985.
http://dx.doi.org/10.1007/978-1-4757-9721-3
|
[8]
|
X. Lu and T. Wang, “Water-Gas Shift Modeling in Coal Gasification in an Entrained-Flow Gasifier, Part 1: Development of Methodology and Model Calibration,” Fuel, Vol. 108, 2013, pp. 629-638.
|
[9]
|
C. Chen, M. Horio and T. Kojima, “Numerical Simulation of Entrained Flow Coal Gasifiers,” Chemical Engineering Science, Vol. 55, No. 18, 2000, pp. 3861-3833.
http://dx.doi.org/10.1016/S0009-2509(00)00030-0
|
[10]
|
C. K. Westbrook and F. L. Dryer, “Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames,” Combustion Science and Technology, Vol. 27, 1981, pp. 31-43.
|
[11]
|
W. P. Jones and R. P. Lindstedt, “Global Reaction Sche- mes for Hydrocarbon Combustion,” Combustion and Flame, Vol. 73, No. 3, 1998, p. 233.
http://dx.doi.org/10.1016/0010-2180(88)90021-1
|
[12]
|
P. Benyon, “Computational Modelling of Entrained Flow Slagging Gasifiers,” Ph.D. Thesis, School of Aerospace, Mechanical & Mechatronic Engineering, University of Sydney, Australia, 2002.
|
[13]
|
A. Silaen and T. Wang, “Effect of Turbulence and Devolatilization Models on Gasification Simulation,” International Journal of Heat and Mass Transfer, Vo. 53, 2010, pp. 2074-2091.
|
[14]
|
T. H. Fletcher, A. R. Kerstein, R. J. Pugmire and D. M. Grant, “Chemical Percolation Model for Devolatilization: 2. Temperature and Heating Rate Effects on Product Yields,” Energy and Fuels, Vol. 4, No. 1, 1990, pp. 54-60.
http://dx.doi.org/10.1021/ef00019a010
|
[15]
|
T. H. Fletcher and A. R. Kerstein, “Chemical Percolation Model for Devolatilization: 3. Direct Use of 13C NMR Date to Predict Effects of Coal Type,” Energy and Fuels, Vol. 6, No. 4, 1992, pp. 414-431.
http://dx.doi.org/10.1021/ef00034a011
|
[16]
|
D. M. Grant, R. J. Pugmire, T. H. Fletcher and A. R. Ker- stein, “Chemical Percolation of Coal Devolatilization Us- ing Percolation Lattice Statistics,” Energy and Fuels, Vol. 3, No. 2, 1989, pp. 175-186.
http://dx.doi.org/10.1021/ef00014a011
|
[17]
|
H. Kobayashi, J. B. Howard and A. F. Sarofim, “Coal Devolatilization at High Temperatures,” 16th Symposium (International) on Combustion, 1976, pp. 411-425.
|