Curvature, Hybridization and Contamination of Carbon Nanostructures Analysis Using Electron Microscopy and XANES Spectroscopy

Abstract

The ability to control the nanoscale shape of carbon nanostructures during wide-scale synthesis process is an essential goal in research for Nanotechnology applications. This paper reports a significant progress toward that goal. Variant CVD has been used for the synthesis of the samples studied. Curvature, hybridization and contamination are analyzed using Electron Microscopies and XANES spectroscopy. The investigations of the results show that four types of samples are obtained. They are carbon nanotubes (CNTs), carbon nanofibers (CNFs), carbon nanowalls (CNWs) and carbon nanoparticles (CNPs). Almost all of them have catalyst nanoparticles (metal) on top in top growth model or on base in base growth model and encapsulated or adsorbed in sidewalls. The orientation of tubular carbon nanomaterials depends on operating parameters. They are classified in three groups: the poorly oriented, the medium oriented and the highly oriented. Their contamination (radicals, atoms and molecules) and hybridization are intrinsically related to the curvature of their graphene layers. XANES spectroscopy allows quantitative characterization of nanomaterials.

Share and Cite:

R. Medjo, B. Sendja and J. Mane, "Curvature, Hybridization and Contamination of Carbon Nanostructures Analysis Using Electron Microscopy and XANES Spectroscopy," Materials Sciences and Applications, Vol. 5 No. 2, 2014, pp. 95-103. doi: 10.4236/msa.2014.52014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, No. 6348, 1991, pp. 56-58.
http://dx.doi.org/10.1038/354056a0
[2] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, Vol. 318, No. 6042, 1985, pp. 162-163.
http://dx.doi.org/10.1038/318162a0
[3] R. Khare and S. Bose, “Carbon Nanotube Based Composites—A Review,” Journal of Minerals & Materials Characterization & Engineering, Vol. 4, No. 1, 2005, pp. 31-46.
[4] E.-S. Park, “Preparation, Characterization and Applicability of Covalently Functionalized MWNT,” In: S. Suzuki, Ed., Physical and Chemical Properties of Carbon Nanotubes, InTech-Open Access Publisher, Rijeka, 2013, pp. 215-244.
[5] P. Singh, R. M. Tripathi and A. Saxena, “Synthesis of Carbon Nanotubes and Their Biomedical Applications,” Journal of Optoelectronics and Biomedical Materials, Vol. 2, No. 2, 2010, pp. 91-98.
[6] R. Q. Zhang and A. De Sarkar, “Theoretical Studies on Formation, Property Tuning and Adsorption of Graphene Segments,” In: S. Mikhailov, Ed., Physics and Applications of Graphene—Theory, InTech-Open Access Publisher, Rijeka, 2011, pp. 3-28.
[7] Z. M. Ao, J. Yang and S. Li, “Applications of Al Modified Graphene on Gas Sensors and Hydrogen Storage,” In: S. Mikhailov, Ed., Physics and Applications of Graphene—Theory, InTech-Open Access Publisher, Rijeka, 2011, pp. 133-174.
[8] P. V. Kamat, “Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion,” The Journal of Physical Chemistry C, Vol. 111, No. 7, 2007, pp. 2834-2860.
http://dx.doi.org/10.1021/jp066952u
[9] K. Sears, L. Dumée, J. Schütz, M. She, C. Huynh, S. Hawkins, M. Mikel and S. Gray, “Recent Developments in Carbon Nanotube Membranes for Water Purification and Gas Separation,” Materials, Vol. 3, No. 1, 2010, pp. 127-149. http://dx.doi.org/10.3390/ma3010127
[10] H. G. Ong and J. Wang, “Study of Carbon Nanotube Based Devices Using Scanning Probe Microscope,” In: S. Suzuki, Ed., Physical and Chemical Properties of Carbon Nanotubes, InTech-Open Access Publisher, Rijeka, 2013, pp. 337-356.
[11] A. Martinez and S. Yamashita, “Carbon Nanotube-Based Photonic Devices: Applications in Nonlinear Optics,” In: J. M. Marulanda, Ed., Carbon Nanotubes Applications on Electron Devices, InTech, 2011, pp. 367-386.
http://www.intechopen.com/books/carbon-nanotubesapplications-on-electron-devices/carbon-nanotube-based-photonic-devices-applications-in-nonlinear-optics
[12] H. S. S. R. Matte, K. S. Subrahmanyam and C. N. R. Rao, “Synthetic Aspects and Selected Properties of Graphene,” Nanomaterials and Nanotechnology, Vol. 1, No. 1, 2011, pp. 3-13.
[13] K. Shin , H. Jeon, C. E. Park, Y. Kim, H. Cho, G. Lee and J. H. Han, “A Low Voltage Operational Single-Walled Carbon Nanotube Thin-film Transistor Containing a High Capacitance Gate Dielectric Layer Produced by LayerBy-Layer Deposition,” Organic Electronics, Vol. 11, No. 8, 2011, pp. 1403-1407.
http://dx.doi.org/10.1016/j.orgel.2010.05.012
[14] J. Svensson, “Carbon Nanotube Transistors: Nanotube Growth, Contact Properties and Novel Devices,” Thesis, University of Gothenburg, GOteborg, 2010.
[15] L. Brus, “Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory,” The Journal of Physical Chemistry A, Vol. 90, No. 12, 1986, pp. 2555-2560.
[16] L. Banyai and S. W. Koch, “Semiconductor Quantum Dots,” World Scientific Publishing Co., River Edge, 1993.
[17] H. Weller, “Quantized Semiconductor Particles: A Novel State of Matter for Materials Science,” Advanced Materials, Vol. 5, No. 2, 1993, pp. 88-95.
[18] T. Maruyama and S. Naritsuka, “Initial Growth Process of Carbon Nanotubes in Surface Decomposition of SiC,” In: S. Yellampalli, Ed., Carbon Nanotubes—Synthesis, Characterization, Applications, InTech, 2011, pp. 29-46.
http://www.intechopen.com/books/carbon-nanotubes-synthesis-characterization-applications/initial-growth-process-of-carbon-nanotubes-in-surface-decomposition-of-sic
[19] B. N. Wang, R. D. Bennett, E. Verploegen, A. J. Hart, and R. E. Cohen, “Characterizing the Morphologies of Mechanically Manipulated Multiwall Carbon Nanotube Films by Small-Angle X-Ray Scattering,” The Journal of Physical Chemistry C, Vol. 111, No. 48, 2007, pp. 1793317940.
[20] L. Liu, L. B. Kong, W. Y. Yin, Y. Chen and S. Matitsine, “Microwave Dielectric Properties of Carbon Nanotube Composites,” In: J. M. Marulanda Ed., Carbon Nanotubes, InTech, 2010, pp. 93-108.
http://www.intechopen.com/books/carbon-nanotubes/microwave-dielectric-properties-ofcarbon-nanotube-composites
[21] R. E. Medjo, B. T. Sendja, J. M. Mane and P. O. Ateba, “A Study of Carbon Nanotube Contamination by XANES Spectroscopy,” Physica Scripta, Vol. 80, No. 4, 2009, Article ID: 045601.
[22] R. E. Medjo, B. T. Sendja, J. M. Mane and P. O. Ateba, “XAS Study of the Orientation of Oriented Carbon Nanotubes Films,” Physica Scripta, Vol. 80, No. 5, 2009, Article ID: 055602.
[23] J. Prase, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam and R. Kizek, “Methods for Carbon Nanotubes Synthesis—Review,” Journal of Materials Chemistry, Vol. 21, No. 1, 2011, pp. 15872-15884.
http://dx.doi.org/10.1039/c1jm12254a
[24] K. Awasthi, R. Kumar, H. Raghubanshi, S. Awasthi, R. Pandey, D. Singh, T. P. Yadav and O. N. Srivastava, “Synthesis of Nano-Carbon, Nanotubes, Nanofibres, Graphene) Materials,” Bulletin of Materials Science, Vol. 34, No. 4, 2011, pp. 607-614.
[25] M. H. Rümmeli, A. Bachmatiuk, F. BOrrnert, F. Schaffel, I. Ibrahim, K. Cendrowski, G. Simha-Martynkova, D. Plachá, E. Borowiak-Palen, G. Cuniberti and B. Büchner, “Synthesis of Carbon Nanotubes with and without Catalyst Particles,” Nanoscale Research Letters, Vol. 6, 2011, p. 303. http://dx.doi.org/10.1186/1556-276X-6-303
[26] R. E. Medjo and C. N. Synthesis, “Carbon Nanotubes Applications on Electron Devices,” In: J. M. Marulanda, Ed., Carbon Nanotubes Applications on Electron Devices, InTech, 2011, pp. 4-36.
http://www.intechopen.com/books/carbon-nanotubes-applications-on-electron-devices/carbon-nanotube-synthesis
[27] M. Kumar and Y. Ando, “Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production,” Journal of Nanoscience and Nanotechnology, Vol. 10, No. 6, 2010, pp. 3739-3758.
[28] M. Pisco, M. Consales, A. Cutolo, P. Aversa, M. Penza, M. Giordano and A. Cusano, “Microstructured Optical Fibers Filled with Carbon Nanotubes: Photonic Bandgap Modification and Sensing Applications,” In: J. M. Marulanda, Ed., Carbon Nanotubes, InTech, 2010, pp. 507-522.
http://www.intechopen.com/books/carbon-nanotubes/microstructuredoptical-fibers-filled-with-carbon-nanotubes-photonic-bandgap-modification-and-sensin
[29] T. Minea, B. Bouchet-Fabre, S. Lazar, S. Point and H. W. Zandbergen, “Angular and Local Spectroscopic Analysis to Probe the Vertical Alignment of N-Doped Well-Separated Carbon Nanotubes,” The Journal of Physical Chemistry B, Vol. 110, No. 32, 2006, pp. 15659-15662.
http://dx.doi.org/10.1021/jp0637072
[30] T. W. Ebbesen and P. M. Ajayan, “Large-Scale Synthesis of Carbon Nanotubes,” Nature, Vol. 358, No. 6383, 1992, pp. 220-222. http://dx.doi.org/10.1038/358220a0
[31] V. Ivanov, J. B. Nagy, P. Lambin, A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx and J. Van Landuyt, “Carbon Nanotubes Production by Catalytic Pyrolysis of Benwene,” Chemical Physics Letters, Vol. 223, No. 4, 1994, pp. 329-335.
http://dx.doi.org/10.1016/0009-2614(94)00467-6
[32] R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates and R. J. Waite, “Nucleation and Growth of Carbon Deposits from the Nickel Catalyzed Decomposition of Acetylene,” Journal of Catalysis, Vol. 26, No. 1, 1972, pp. 51-62.
[33] N. M. Rodriguez, “A Review of Catalytically Grown Carbon Nanofibers,” Journal of Materials Research, Vol. 8, No. 12, 1993, pp. 3233-3250.
[34] K. P. D. Jong and J. W. Geus, “Carbon Nanofibres: Catalytic Synthesis and Applications,” Catalysis Reviews-Science and Engineering, Vol. 42, No. 4, 2000, pp. 481-510.
[35] T. Katsumata, Y. Fujimura, M. Nagayama, H. Tabata, H. Takikawa, Y. Hibi, T. Sakakibara and S. Itoh, “Synthesis of Twisted Carbon Nanofiber by Catalytic CVD Method,” Transactions of the Materials Research Society of Japan, Vol. 29, No. 2, 2004, pp. 501-504.
[36] J. W. Mintmire, B. I. Dunlap and C. T. White, “Are Fullerene Tubules Metallic,” Chemical Physics Letters, Vol. 68, No. 5, 1992, pp. 631-634.
http://dx.doi.org/10.1103/PhysRevLett.68.631
[37] R. A. Rosenberg, P. J. Love and V. Rehn, “PolarisationDependant Near-Edge X-Ray-Absorption Fine Structure of Graphite,” Physical Review B, Vol. 33, No. 6, 1986, pp. 4034-4307. http://dx.doi.org/10.1103/PhysRevB.33.4034
[38] J. Zhong, C. Liu, Z. Y. Wu, A. Mamatimin, I. Kurash, H. M. Cheng, B. Gao and L. Liu, “XANES Study of Carbon Based Nanotubes,” High Energy Physics and Nuclear Physics, Vol. 29, No. 5, 2005, pp. 97-101.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.