Fabrication of Nanocrystalline TiO2 Thin Film Ammonia Vapor Sensor


Nanocrystalline titanium oxide thin films have been deposited by spin coating technique and then have been analyzed to test their application in NH3 gas-sensing technology. In particular, spectrophotometric and con-ductivity measurements have been performed in order to determine the optical and electrical properties of titanium oxide thin films. The structure and the morphology of such material have been investigated by X ray diffraction, Scanning microscopy, high resolution electron microscopy and selected area electron diffrac-tion. The X-ray diffraction measurements confirmed that the films grown by this technique have good crys-talline tetragonal mixed anatase and rutile phase structure The HRTEM image of TiO2 thin film showed grains of about 50-60 nm in size with aggregation of 10-15 nm crystallites. Selected area electron diffraction pattern shows that the TiO2 films exhibited tetragonal structure. The surface morphology (SEM) of the TiO2 film showed that the nanoparticles are fine The optical band gap of TiO2 film is 3.26 eV. Gas sensing proper-ties showed that TiO2 films were sensitive as well as fast in responding to NH3. A high sensitivity for ammo-nia indicates that the TiO2 films are selective for this gas.

Share and Cite:

S. Pawar, M. Chougule, S. Patil, B. Raut, D. Dalvi, P. Patil, S. Sen, P. Joshi and V. Patil, "Fabrication of Nanocrystalline TiO2 Thin Film Ammonia Vapor Sensor," Journal of Sensor Technology, Vol. 1 No. 1, 2011, pp. 9-16. doi: 10.4236/jst.2011.11002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Meixner and U. Lampe, “Metal Oxide Sensors,” Sensors and Actuators B: Chemical, Vol. 33, No. 1-3, July 1996, pp. 198-202. doi:10.1016/0925-4005(96)80098-0
[2] T. Oyabu, “Sensing characteristics of SnO2 thin film gas sensor,” Journal of Applied Physics, Vol. 53, No. 4, April 1982, pp.2785-89. doi:10.1063/1.331079
[3] J. F. Mc Aleer, P. T. Moseley, J. O. W. Norris, D. E. Williams, P. Taylor and B. C. Tofield, “Tin Oxide Based Gas Sensors,” Materials Chemistry and Physics, Vol. 17, No. 6, 1987, pp. 577-583. doi:10.1016/0254-0584(87)90017-4
[4] M. Di Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella and P. Siciliano, “SnO2 Thin Films for Gas Sensor Prepared by r.f. Reactive Sputtering,” Sensors and Actuators B: Chemical ,Vol. 25, No. 1-3, April 1995, pp. 465-468. doi:10.1016/0925-4005(94)01397-7
[5] M. Di Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella and P. Siciliano, “Characteristics of Reactively Sputtered Pt–SnO2 Thin Films for CO Gas Sensors,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 14, No. 4, June 1996, pp. 2215-2220. doi:10.1116/1.580049
[6] F. Boccuzzi, E. Guglielmetti, and A. Chiorino, “IR Study of Gas-Sensor Materials: NO Interaction on ZnO and TiO2, Pure or Modified by Metals,” Sensors and Actuators B: Chemical, Vol. 7, No 1-3, March 1992, pp. 645- 650. doi:10.1016/0925-4005(92)80379-C
[7] B. Bott, T. A. Jones and B. Mann, “The detection and measurement of CO using ZnO single Crystals,” Sensors and Actuators, Vol. 5, No. 1, January 1984, pp. 65-73. doi:10.1016/0250-6874(84)87007-9
[8] H. M. Lin, C. M. Hsu, H. Y. Yang, P. Y. Lee and C. C. Yang, “Nanocrystalline WO3-Based H2S Sensors,” Sensors and Actuators B: Chemical Vol. 22, No. 1, October 1994, pp. 63-68. doi:10.1016/0925-4005(94)01256-3
[9] M. Cantalini, H. T. Sun, M. Faccio, M. Pelino, S. Santucci, L. Lozzi and M. Passacantando, “NO2 Sensitivity of WO3 Thin Film Obtained by High Vacuum Thermal Evaporation,” Sensors and Actuators B: Chemical, Vol. 31, No. 1-2, February 1996, pp. 81-87. doi:10.1016/0925-4005(96)80020-7
[10] O. Schillin and K. Colbow, “A Mechanism for Sensing Reducing Gases with Vanadium Pentoxide Films,” Sensors and Actuators B: Chemical, Vol. 21, No. 2, August 1994, pp. 151-157. doi:10.1016/0925-4005(94)80017-0
[11] K. M. Glaassford, N. Troullier, J. L. Martins and J. R. Chelikowsky, “Electronic and Structural Properties of TiO2 in the Rutile Structure,” Solid State Communications, Vol. 76, No. 5, November 1990, pp. 635-638. doi:10.1016/0038-1098(90)90105-K
[12] K. B. Sundaram and A. Khan, “High Quality Zinc Oxide Films by Pulsed Laser Ablation,” Thin Solid Films, Vol. 295, No 1-2, February 1997, pp. 104-106. doi:10.1016/S0040-6090(96)09274-7
[13] J. Aranovich, A. Ortiz and R. H. Bube, “Properties of Zinc Oxide Films Prepared by the Oxidation of Diethyl Zinc,” Journal of Applied Physics, Vol. 52, No, 11, 1981, pp. 6685-6693. doi:10.1116/1.570167
[14] M. N. Islam, M. O. Hakim and H. Rahman, “Interaction of Tin Oxide Surface with O2, H2O and H2,” Surface Science, Vol. 86, 1979, pp. 335-344. doi:10.1007/BF01233137
[15] S. Major and K. L. Chopra, “Hall Effect Studies of Oxygen Chemisorption on Zinc Oxide,” Journal of Catalysis, Vol. 14, No. 3, July 1969, pp. 257-260. doi:10.1016/0165-1633(88)90014-7
[16] M. de la L. Olvera, A. Maldonado, R. Asomoza, M. Konagai and M. Asomoza, “Reactively Sputtered Indium tin Oxide Polycrystalline Thin Films as NO and NO2 Gas Sensors,” Thin Solid Films, Vol. 186, No. 2, May 1990, pp. 349-360. doi:10.1016/0040-6090(93)90364-U

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.