[1]
|
D. R. Neuville, L. Cormier, B. Boizot and A.-M. Flank, “Structure of β-Irradiated Glasses Studied by X-Ray Absorption and Raman Spectroscopies,” Journal of NonCrystalline Solids, Vol. 323, No. 1-3, 2003, pp. 207-213. http://dx.doi.org/10.1016/S0022-3093(03)00308-9
|
[2]
|
M. E. Lines, “Photoelastic Trends from Halides to Pnictides by a Bond-Orbital Method,” Journal of Applied Physics, Vol. 60, No. 4, 1986, pp. 1472-1478. http://dx.doi.org/10.1063/1.337274
|
[3]
|
H. Hosono, K. Yamazaki and Y. Abe, “Reversible Optical Change of Amorphous Red Phosphorus in Reduced Phosphate Glasses,” Journal of the American Ceramic Society, Vol. 68, No. 1, 1985, pp. C304-C305. http://dx.doi.org/10.1111/j.1151-2916.1985.tb15242.x
|
[4]
|
Z. T. Zhang, G. H. Wen, P. Tang and S. Sridhar, “The Influence of Al2O3/SiO2 Ratio on the Viscosity of Mold Fluxes,” ISIJ International, Vol. 48, No. 6, 2008, pp. 739-746. http://dx.doi.org/10.2355/isijinternational.48.739
|
[5]
|
P. B. Debenedetti and F. H. Stillinger, “Supercooled Liquids and the Glass Transition,” Nature, Vol. 410, No. 6825, 2001, pp. 259-267. http://dx.doi.org/10.1038/35065704
|
[6]
|
Y. Liang, F. M. Richter, A. M. Davis and E. B. Watson, “Diffusion in Silicate Melts: I. Self Diffusion in CaOAl2O3-SiO2 at 1500°C and 1 GPa,” Geochimica et Cosmochimica Acta, Vol. 60, No. 22, 1996, pp. 4353-4367. http://dx.doi.org/10.1016/S0016-7037(96)00288-8
|
[7]
|
K. G. Ewsuk, S. J. Glass, R. E. Loehman, A. P. Tomsia and W. G. Fahrenholtz, “Microstructure and Properties of Al2O3-Al(Si) and Al2O3-Al(Si)-Si Composites Formed by in Situ Reaction of Al with Aluminosilicate Ceramics,” Metallurgical and Materials Transactions A, Vol. 27, No. 8, 1996, pp. 2122-2129. http://dx.doi.org/10.1007/BF02651867
|
[8]
|
D. Nevins and F. J. Spera, “Molecular Dynamics Simulations of molten CaAl2Si2O8: Dependence of Structure and Properties on Pressure,” American Mineralogist, Vol. 83, No. 11-12, 1998, pp. 1220-1230.
|
[9]
|
A. Whittington, P. Richet and F. Holtz, “Water and the Viscosity of Depolymerized Aluminosilicate Melts,” Geochimica et Cosmochimica Acta, Vol. 64, No. 21, 2000, pp. 3725-3736. http://dx.doi.org/10.1016/S0016-7037(00)00448-8
|
[10]
|
G. Gruener, P. Odier, D. De Sousa Meneses, P. Florian and P. Richet, “Bulk and Local Dynamics in Glass-Forming Liquids: A Viscosity, Electrical Conductivity, and NMR Study of Aluminosilicate Melts,” Physical Review B, Vol. 64, No. 2, 2001, pp. 024206(1-5).
|
[11]
|
V. V. Hoang, “Dynamical Heterogeneity and Diffusion in High-Density Al2O3d2SiO2 Melts,” Physica B, Vol. 400, No. 1-2, 2007, pp. 278-286. http://dx.doi.org/10.1016/j.physb.2007.07.023
|
[12]
|
N. A. Morgan and F. J. Spera, “A Molecular Dynamics Study of the Glass Transition in Ca Al2Si2O8,” American Mineralogist, Vol. 86, No. 4, 2001, pp. 915-926.
|
[13]
|
J. Horbach, W. Kob and K. Binder, “Molecular Dynamics Simulation of the Dynamics of Supercooled Silica,” Philosophical Magazine Part B, Vol. 77, No. 2, 1998, pp. 297-303. http://dx.doi.org/10.1080/13642819808204955
|
[14]
|
B. Sauerhammer, M. Spiegel, D. Senk, E. Schmidt, S. Sridhar and M. Safi, “Effect of Liquid Phase on Scale Formation during High-Temperature Oxidation of AlSiTransformation-Induced Plasticity Steel Surfaces,” Metallurgical and Materials Transactions B, Vol. 36, No. 4, 2005, pp. 503-512.
|
[15]
|
A. Tandia, N. T. Timofeev, J. C. Mauro and K. D. Vargheese, “Defect-Mediated Self-Diffusion in Calcium Aluminosilicate Glasses: A Molecular Modeling Study,” Journal of Non-Crystalline Solids, Vol. 357, No. 7, 2011, pp. 1780-1786. http://dx.doi.org/10.1080/13642819808204955
|
[16]
|
B. T. Poe, P. F. McMillan, D. C. Rubie, S. Chakraborty, J. Yarger and J. Diefenbacher, “Silicon and Oxygen SelfDiffusivities in Silicate Liquids Measured to 15 Gigapascals and 2800 Kelvin,” Science, Vol. 276, No. 5316, 1997, pp. 1245-1248. http://dx.doi.org/10.1126/science.276.5316.1245
|
[17]
|
S. K. Lee and J. F. Stebbins, “Disorder and the Extent of Polymerization in Calcium Silicate and Aluminosilicate Glasses: O-17 NMR Results and Quantum Chemical Molecular Orbital Calculations,” Geochimica et Cosmochimica Acta, Vol. 70, No. 16, 2006, pp. 4275-4286. http://dx.doi.org/10.1016/j.gca.2006.06.1550
|
[18]
|
M. J. Toplis, D. B. Dingwell and T. Lenci, “Peraluminous Viscosity Maxima in Na2O-Al2O3-SiO2 Liquids: The Role of Triclusters in Tectosilicate melts,” Geochimica et Cosmochimica Acta, Vol. 61, No. 13, 1997, pp. 2605-2612. http://dx.doi.org/10.1016/S0016-7037(97)00126-9
|
[19]
|
J. F. Stebbins, J. V. Oglesby and S. Kroeker, “Oxygen Triclusters in Crystalline CaAl4O7 (Grossite) and in Calcium Aluminosilicate Glasses: 17O NMR,” American Mineralogist, Vol. 86, No. 3, 2001, pp. 1307-1311.
|
[20]
|
D. R. Neuville, L. Cormier, V. Montouillout and D. Massiot, “Local Al Site Distribution in Aluminosilicate Glasses by 27Al MQMAS NMR,” Journal of Non-Crystalline Solids, Vol. 353, No. 2, 2007, pp. 180-184. http://dx.doi.org/10.1016/j.jnoncrysol.2006.09.035
|
[21]
|
S. Sen and R. E. Youngman, “High-Resolution Multinuclear NMR Structural Study of Binary Aluminosilicate and Other Related Glasses,” The Journal of Physical Chemistry B, Vol. 108, No. 23, 2004, pp. 7557-7564. http://dx.doi.org/10.1021/jp031348u
|
[22]
|
T. Matsumiya, A. Nogami and Y. Fukuda, “Applicability of Molecular Dynamics to Analyses of Refining Slags,” ISIJ International, Vol. 33, No. 1, 1993, pp. 210-217. http://dx.doi.org/10.2355/isijinternational.33.210
|
[23]
|
P. Ganster, M. Benoit, W. Kob and J.-M. Delaye, “Structural Properties of a Calcium Aluminosilicate Glass from Molecular-Dynamics Simulations: A Finite Size Effects Study,” The Journal of Chemical Physics, Vol. 120, No. 21, 2004, pp. 10172-10181. http://dx.doi.org/10.1063/1.1724815
|
[24]
|
F. J. Spera, D. Nevins, M. Ghiorso and I. Cutler, “Structure, Thermodynamic and Transport Properties of CaAl2Si2O8 Liquid. Part I: Molecular Dynamics Simulations,” Geochimica et Cosmochimica Acta, Vol. 73, No. 22, 2009, pp. 6918-6936. http://dx.doi.org/10.1016/j.gca.2009.08.011
|
[25]
|
K. Zheng, Z. T. Zhang, F. H. Yang and S. Sridhar, “Molecular Dynamics Study of the Structural Properties of Calcium Aluminosilicate Slags with Varying Al2O3/SiO2 Ratios,” ISIJ International, Vol. 52, No. 3, 2012, pp. 342349.
|
[26]
|
N. A. Morgan and F. J. Spera, “Glass Transition, Structural Relaxation, and Theories of Viscosity: A Molecular Dynamics Study of Amorphous CaAl2Si2O8,” Geochimica et Cosmochimica Acta, Vol. 65, No. 21, 2001, pp. 4019-4041. http://dx.doi.org/10.1016/j.gca.2009.08.011
|
[27]
|
K. D. Vargheese, A. Tandia and J. C. Mauro, “Origin of Dynamical Heterogeneities in Calcium Aluminosilicate Liquids,” The Journal of Chemical Physics, Vol. 132, No. 19, 2010, pp. 194501(1-9).
|
[28]
|
C. M. Scarfe and D. J. Cronin, “Viscosity-Temperature Relationships at I atm in the System Diopside-Anorthit,” American Mineralogist, Vol. 68, No. 11-12, 1983, pp. 1083-1088.
|
[29]
|
V. Petkov, T. Gerber and B. Himmel, “Atomic ordeRing in Cax/2AlxSi1-xO2 Glasses (x =0, 0.34, 0.5, 0.68) by Energy-Dispersive x-Ray Diffraction,” Physical Review B, Vol. 58, No. 18, 1998, pp. 11982-11989. http://dx.doi.org/10.1103/PhysRevB.58.11982
|
[30]
|
J. F. Stebbins and Z. Xu, “NMR Evidence for Excess Non-Bridging Oxygen in an Aluminosilicate Glass,” Nature, Vol. 390, No. 6655, 1997, pp. 60-62. http://dx.doi.org/10.1038/36312
|
[31]
|
J. R. Allwardt, S. K. Lee and J. F. Stebbins, “Bonding Preferences of Non-Bridging Oxygens in Calcium Aluminosilicate Glass: Evidence from 17O MAS and 3QMAS NMR on Calcium Aluminate and Low-Silica Ca-Aluminosilicate Glasses,” American Mineralogist, Vol. 88, 2003, pp. 949-954.
|
[32]
|
V. Petkov, S. J. L. Billinge, S. D. Shastri and B. Himmel, “Polyhedral Units and Network Connectivity in Calcium Aluminosilicate Glasses from High-Energy X-Ray Diffraction,” Physical Review Letters, Vol. 85, No. 16, 2000, pp. 3436-3439. http://dx.doi.org/10.1103/PhysRevLett.85.3436
|
[33]
|
M. Schmucker and H. Schneider, “New Evidence for Tetrahedral Triclusters in Aluminosilicate Glasses,” Journal of Non-Crystalline Solids, Vol. 311, No. 2, 2002, pp. 211-215. http://dx.doi.org/10.1016/S0022-3093(02)01632-0
|
[34]
|
D. R. Neuville, L. Cormier and D. Massiot, “Al coordination and Speciation in Calcium Aluminosilicate Glasses: Effects of Composition Determined by 27Al MQ-MAS NMR and Raman Spectroscopy,” Chemical Geology, Vol. 229, No. 1-3, 2006, pp. 173-185. http://dx.doi.org/10.1016/j.chemgeo.2006.01.019
|
[35]
|
A. C. Hannon and J. M. Parker, “The Structure of Aluminate Glasses by Neutron Diffraction,” Journal of NonCrystalline Solids, Vol. 274, No. 1-3, 2000, pp. 102-109. http://dx.doi.org/10.1016/j.chemgeo.2006.01.019
|
[36]
|
L. Cormier, D. Ghaleb, D. R. Neuville, J.-M. Delaye and G. Calas, “Chemical Dependence of Network Topology of Calcium Aluminosilicate Glasses: A Computer Simulation Study,” Journal of Non-Crystalline Solids, Vol. 332, No. 1-3, 2003, pp. 255-270. http://dx.doi.org/10.1016/j.jnoncrysol.2003.09.012
|