} } }; xhrj.open('GET', encodeURI(sUrl), bAsync); xhrj.send('Null'); } } function RndNum(n) { var rnd = ""; for (var i = 0; i < n; i++) rnd += Math.floor(Math.random() * 10); return rnd; } function SetNum(item) { var url = "//www.scirp.org/journal/senddownloadnum.aspx"; var args = "paperid=" + item; url = url + "?" + args + "&rand=" + RndNum(4); window.setTimeout("show('" + url + "')", 3000); } function show(url) { var callback = function (xhrj) { } ajaxj.get(url, true, callback, "try"); } // function SetNumTwo(item) { // alert("jinlia"); // var url = "../userInformation/PDFLogin.aspx"; // var refererrurl = document.referrer; // var downloadurl = window.location.href; // var args = "PaperID=" + item + "&RefererUrl=" + refererrurl + "&DownloadUrl="+downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // //// window.setTimeout("show('" + url + "')", 500); // } // function pdfdownloadjudge() { // $("a").each(function(index) { // var rel = $(this).attr("rel"); // if (rel == "true") { // $(this).removeAttr("onclick"); // $(this).attr("href","#"); // //$(this).bind('click', function() { SetNumTwo(43043)}); // var url = "../userInformation/PDFLogin.aspx"; // var refererrurl = document.referrer; // var downloadurl = window.location.href; // var args = "PaperID=" + 43043 + "&RefererUrl=" + refererrurl + "&DownloadUrl=" + downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // // $(this).bind('click', function() { ShowTwo(url)}); // } // }); // } // //获取下载pdf注册的cookie // function getcookie() { // var cookieName = "pdfddcookie"; // var cookieValue = null; //返回cookie的value值 // if (document.cookie != null && document.cookie != '') { // var cookies = document.cookie.split(';'); //将获得的所有cookie切割成数组 // for (var i = 0; i < cookies.length; i++) { // var cookie = cookies[i]; //得到某下标的cookies数组 // if (cookie.substring(0, cookieName.length + 2).trim() == cookieName.trim() + "=") {//如果存在该cookie的话就将cookie的值拿出来 // cookieValue = cookie.substring(cookieName.length + 2, cookie.length); // break // } // } // } // if (cookieValue != "" && cookieValue != null) {//如果存在指定的cookie值 // return false; // } // else { // // return true; // } // } // function ShowTwo(webUrl){ // alert("22"); // $.funkyUI({url:webUrl,css:{width:"600",height:"500"}}); // } //window.onload = pdfdownloadjudge;
OJAppS> Vol.4 No.2, February 2014
Share This Article:
Cite This Paper >>

Prediction of the Local Scour at the Bridge Square Pier Using a 3D Numerical Model

Abstract Full-Text HTML XML Download Download as PDF (Size:1752KB) PP. 34-42
DOI: 10.4236/ojapps.2014.42005    4,769 Downloads   7,102 Views   Citations
Author(s)    Leave a comment
Nguyen Viet Thanh, Dang Huu Chung, Tran Dinh Nghien

Affiliation(s)

University of Transport and Communication, Hanoi, Viet Nam.
Vietnam Academy of Science and Technology, Hanoi, Viet Nam.

ABSTRACT

In this paper, the problem on local scour around a single square pier was studied by using both the numerical and physical models. The numerical model for the study is FSUM based on a finite-difference method to solve the Reynolds averaged Navier-Stokes equations (RANS) and the equations for suspended sediment concentration and bed morphology. The computed result was verified through data measured in the experimental flume with a sand bed. In general, the typical features of local scour around the pier were successfully simulated by FSUM, such as stream flow, bow flow, down flow, horseshoe vortex. The comparison between the computation and experiment data shows a quite good fitness. Both numerical model and experiment results show that the maximum scour depth occurs at two front edges of the pier. Although the computed result shows a little bigger scour depth in comparison with the measurement in the physical model, it still confirms the reliability of numerical model in some measure.

KEYWORDS

Numerical Modeling; Experiment; Bridge Square Pier; Local Scour; FSUM Model

Cite this paper

N. Thanh, D. Chung and T. Nghien, "Prediction of the Local Scour at the Bridge Square Pier Using a 3D Numerical Model," Open Journal of Applied Sciences, Vol. 4 No. 2, 2014, pp. 34-42. doi: 10.4236/ojapps.2014.42005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Richardson, E.V. and Davis, S.R. (2001) Evaluating scour at bridges. 4th Edition, Federal Highway Administration Hydraulic Engineering Circular No. 18, FHWA NHI 01-001.
[2] Bakker, W.T. (1974) Sand concentration in an oscillatory flow. Proceedings of 14th Conference on Coastal Engineering, Copenhagen, 24-28 June 1974, 1129-1148.
[3] Hagatun, K. and Eidsvik, K.J. (1986) Oscillatory turbulent boundary layers with suspended sediments. Journal of Geophysical Research, 91, 13045-13055.
http://dx.doi.org/10.1029/JC091iC11p13045
[4] Nadaoka, K. and Yagi, H. (1990) Single-phase fluid modeling of sheet-flow toward the development of numerical mobile bed. Proceedings of 22nd Conference on Coastal Engineering, Delft, 2-6 July 1990, 2346-2359.
[5] Olsen, N.R.B. and Melaaen, M.C. (1993) Three-dimensional calculation of scour around cylinders. Journal of Hydraulic Engineering, 119, 1048-1054.
http://dx.doi.org/10.1061/(ASCE)0733-9429(1993)119:9(1048)
[6] Asano, T. (1990) Two-phase flow model on oscillatory sheet-flow. Proceedings of 22nd Conference on Coastal Engineering, Delft, 2-6 July 1990, 2372-2384.
[7] Li, L. and Sawamoto, M. (1995) Multi-phase model on sediment transport in sheet flow regime under oscillatory flow. Coastal Engineering Journal (Japan), 38, 157-178.
[8] Gotoh, H. and Sakai, T. (1997) Numerical simulation of sheet flow as granular material. Journal of Waterway, Port, Coastal, and Ocean Engineering, 123, 329-336.
[9] Richardson, J.E. and Pancheng, V.G. (1998) Three dimensional simulation of scour inducing flow at bridge piers. Journal of Hydraulic Engineering, 124, 530-540.
http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:5(530)
[10] Wang, S.S.Y. and Jia, Y. (1999) Computational simulations of local scour at bridge crossings—Capabilities and limitations. Proceedings ASCE International Water Resources Engineering Conference, Seattle, 8-12 August 1999, Session BS-06, Water Resources Publications, LLC, Highlands Ranch.
[11] Tseng, M., Yen, C.L. and Song, C.C.S. (2000) Computation of three-dimensional flow around square and circular piers. International Journal for Numerical Methods in Fluids, 34, 207-227.
http://dx.doi.org/10.1002/1097-0363(20001015)34:3<207::AID-FLD31>3.0.CO;2-R
[12] Sumer, B.M., Roulund, A., Fredsoe, J. and Michelsen, J. (2002) 3-D numerical modeling of flow and scour around a pile. First International Conference on Scour of Foundations, ICSF-1, College Station, 17-20 November 2002, 795-809.
[13] Gamal, A.A.A., Hassan, I.M. and Shima, M.A. (2006) 3-D numerical simulation of flow and clear water scour by interaction between bridge piers. Tenth International Water Technology Conference, IWTC10, Alexandria, 2006.
[14] Azhari, A., Saghravani, S.F. and Mohammadnezhad, B.A. (2010) 3D Numerical modeling of local scour around the cylindrical bridge piers. In: Carrera, J., Ed., XVIII International Conference on Water Resources CMWR 2010, CIMNE, Barcelona.
[15] Chung, D.H. (2008) FSUM model and applications. Vietnam Journal of Mechanics, VAST, 30, 237-247.
[16] Chung, D.H. (2008) Numerical simulation of sediment transport from Ba Lat Mouth and the process of coastal morphology. Journal of Geophysics and Engineering, 5, 46-53.
http://dx.doi.org/10.1088/1742-2132/5/1/005
[17] Mohammadi, B. and Pironneau, O. (1994) Analysis of the k-epsilon turbulence mode. John Wiley & Sons, Chichester.
[18] Chung, D.H. and Eppel, D. (2008) Effects of some parameters on numerical simulation of coastal bed morphology. International Journal of Numerical Methods for Heat & Fluid Flow, 18, 575-592.
http://dx.doi.org/10.1108/09615530810879729
[19] Chung, D.H. and Duyen, N.T.K. (2012) Sensitivity of Lagrangian particle tracking based on a 3D numerical model. Journal of Modern Physics, 3, 1972-1978.
http://dx.doi.org/10.4236/jmp.2012.312246
[20] Casulli, V. and Stelling, G.S. (1998) Numerical simulation of 3D quasi-hydrostatic, free-surface flows. Journal of Hydraulic Engineering, 124, 678-698.
[21] Ali, K.H.M. and Karim, O. (2002) Simulation of flow around piers. Journal of Hydraulic Research, IAHR, 40, 161-174.
http://dx.doi.org/10.1080/00221680209499859

  
comments powered by Disqus
OJAppS Subscription
E-Mail Alert
OJAppS Most popular papers
Publication Ethics & OA Statement
OJAppS News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.