Antimicrobial Resistance in Enterococcus sp Isolated from Soft Cheese in Southern Brazil


The aim of this research was to study the incidence of antibiotic resistance in 56 Enterococcus strains isolated from dairy products. The identification of enterococci was detected by polymerase chain reaction (PCR) using specific primers to E. faecalis, E. faecium, E. gallinarum and E. casseliflavus, and antibiotic resistance was tested by the disk diffusion method. The most prevalent species was E. faecium with a rate of 58.33%, followed by 27.77% E. faecalis, 11.11% E. casseliflavus and 2.7% E. gallinarum. Distribution of resistance was found in different species. All isolates were susceptible to chloramphenicol, ampicillin, imipenem and amoxicillin/clavulanic acid. In addition, isolates resistant to tetracyclin, nalidixic acid, amikacin, erythromycin, vancomycin and cephalothin were detected. A total of 66.6% of E. faecium and 58.3% of E. faecalis strain were resistant to multiple drugs. The van(A) gene was detected in 100% of vancomycin resistant enterococci. Considering the results of our study, dairy enterococci can be considered a potential source for dissemination of antibiotic resistances.

Share and Cite:

L. Furlaneto-Maia, K. Rocha, F. Henrique, A. Giazzi and M. Furlaneto, "Antimicrobial Resistance in Enterococcus sp Isolated from Soft Cheese in Southern Brazil," Advances in Microbiology, Vol. 4 No. 3, 2014, pp. 175-181. doi: 10.4236/aim.2014.43023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. Giraffa, “Enterococci from Foods,” FEMS Microbiology Reviews, Vol. 26, No. 2, 2002, pp. 163-171.
[2] C. M. A. P. Franz, W. H. Holzapfel and M. E. Stiles, “Enterococci at the Crossroads of Food Safety?” International Journal of Food Microbiology, Vol. 47, No. 1-2, 1999, pp. 1-24.
[3] G. Giraffa, “Functionality of Enterococci in Dairy Products,” International Journal of Food Microbiology, Vol. 88, No. 2-3, 2003, pp. 215-222.
[4] R. Malek, A. El-Attar, M. Mohamed, S. Anwar, M. ElSoda and C. Béal, “Technological and Safety Properties Display Biodiversity among Enterococci Isolated from Two Egyptian Cheeses, ‘Ras’ and ‘Domiati’,” International Journal of Food Microbiology, Vol. 153, No. 3, 2012, pp. 314-322.
[5] G. Giraffa, D. Carminati and E. Neviani, “Enterococci Isolated from Dairy Products: A Review of Risks and Potential Technological Use,” Journal of Food Protection, Vol. 60, 1997, pp. 732-738.
[6] D. R. Schaberg, D. H. Culver and R. P. Gaynes, “Major Trends in the Microbial Etiology of Nosocomial Infection,” American Journal of Medicine, Vol. 91, No. 3, 1991, pp. 72S-75S.
[7] A. Lombardi, D. Cariolato and C. Andrighetto, “Occurrence of Virulence Factors and Antibiotic Resistances in Enterococcus faecalis and Enterococcus faecium Collected from Dairy and Human Samples in North Italy,” Food Control, Vol. 19, No. 9, 2008, pp. 886-892.
[8] L. M. Mundy, D. F. Sahm and M. Gilmore, “Relationships between Enterococcal Virulence and Antimicrobial Resistances,” Clinical Microbiology Reviews, Vol. 13, No. 4, 2000, pp. 513-522.
[9] S. Radu, H. Toosa, R. A. Rahim, A. Reezal, M. Ahmad, A. N. Hamid, G. Rusul and M. Nishibuchi, “Occurrence of the vanA and vanC2/C3 Genes in Enterococcus Species Isolated from Poultry Sources in Malaysia,” Diagnostic Microbiology and Infectious Disease, Vol. 39, No. 3, 2001, pp. 145-153.
[10] A. K. Oli, R. Sungar, N. Shivshetty, R. Hosamani1 and K. C. Revansiddappa, “Study of Scanning Electron Microscope of Vancomycin Resistant Enterococcus faecalis from Clinical Isolates,” Advances in Microbiology, Vol. 2, No. 2, 2012, pp. 93-97.
[11] R. Leclercq, E. Derlot, J. Duval and P. Courvalin, “Plasmid Mediated Resistance to Vancomycin and Teicoplanin Resistance in Enterococcus faecium,” New England Journal of Medicine, Vol. 319, 1988, pp. 157-161.
[12] B. D. Shepard and M. S. Gilmore, “Antibiotic-Resistant Enterococci: The Mechanisms and Dynamics of Drug Introduction and Resistance,” Microbes and Infection, Vol. 4, No. 2, 2002, pp. 215-224.
[13] T. J. Eaton and M. J. Gasson, “Molecular Screening of Enterococcus Virulence Determinants and Potential for Genetic Exchange between Food and Medical Isolates,” Applied and Environmental Microbiology, Vol. 67, No. 4, 2001, pp. 1628-1635.
[14] G. Huys G, K. D’Haene, J. C. Collard and J. Swings, “Prevalence and Molecular Characterization of Tetracycline Resistance in Enterococcus Isolates from Food,” Applied and Environmental Microbiology, Vol. 70, No. 3, 2004, pp. 1555-1562.
[15] W. Witte, “Medical Consequences of Antibiotic Use in Agriculture,” Science, Vol. 279, No. 5353, 1998, pp. 996-997.
[16] L. M. Teixeira and R. R. Facklam, “Enterococcus,” In: P. R. Murray, E. J. Baron, J. H. Jorgensen, M. A. Pfaller and R. H. Yolken, Eds., Manual of Clinical Microbiology, 9th Edition, American Society for Microbiology, Washington DC, 2007, pp. 422-433.
[17] E. B. Marques and S. Suzart, “Enterococcus faecalis Strains Isolated in Londrina, Brazil,” Journal of Medical Microbiology, Vol. 53, No. 11, 2004, pp. 1069-1073.
[18] S. Dukta-Malen, S. Evers and P. Courvalin, “Detection of Glycopeptide Resistance Genotypes and Identification to the Species Level of Clinically Relevant Enterococci by PCR,” Journal of Clinical Microbiology, Vol. 33, 1995, pp. 24-27.
[19] D. Ke, F. J. Picard, F. Martineau, P. H. R. Ménard, M. Ouellette and M. G. Bergeron, “Development of a PCR Assay for Rapid Detection of Enterococci,” Journal of Clinical Microbiology, Vol. 37, 1999, pp. 3497-3503.
[20] C. Andrighetto, E. Knijff, A. Lombardi, S. Torriani, M. Vancanneyt and K. Kersters, “Phenotypic and Genetic Diversity of Enterococci Isolated from Italian Cheeses,” Journal of Dairy Research, Vol. 68, No. 2, 2001, pp. 303-316.
[21] National Committee for Clinical Laboratory Standards, “Performance Standards for Antimicrobial Disk Susceptibility Testing,” Twelfth Informational Supplement (M100-S12), ACCLS, Wayne, 2002.
[22] Clinical and Laboratory Standards Institute, “M07-A.B. Methods for Dilution Antimicrobial Susceptility Tests for Bacteria that Grow Aerobically; Approved Standard: 8th Edition,” CLSI, Wayne, 2009.
[23] D. Jurkovic, L. Krizkova, R. Dusinsky, A. Belicova, M. Sojka and J. Krajcovic, “Identification and Characterization of Enterococci from Bryndza Cheese,” Letters in Applied Microbiology, Vol. 42, 2006, pp. 553-559.
[24] R. Gelsomino, M. Vancanneyt, T. M. Cogan, S. Condon and J. Swings, “Source of Enterococci in a Farmhouse Raw-Milk Cheese,” Applied and Environmental Microbiology, Vol. 68, No. 7, 2002, pp. 3560-3565.
[25] G. Suzzi, M. Caruso, F. Gardini, A. Lombardi, L. Vannini, M. E. Guerzoni, C. Andrighetto and M. T. Lanorte, “A Survey of the Enterococci Isolated from an Artisanal Italian Goat’s Cheese (Semicottocaprino),” Journal of Applied Microbiology, Vol. 89, No. 2, 2000, pp. 267-274.
[26] S. Cosentino, M. B. Pisano, A. Corda, M. E. Fadda and C. Piras, “Genotypic and Technological Characterization of Enterococci Isolated from Artisanal Fiore Sardo Cheese,” Journal of Dairy Research, Vol.71, No. 4, 2004, pp. 444-450.
[27] H. Drahovská, L. Slobodníková, D. Kocíncová, M. Seman, R. Konceková and J. Turna, “Antibiotic Resistance and Virulence Factors among Clinical and Food Enterococci Isolated in Slovakia,” Folia Microbiologica, Vol. 49, No. 6, 2004, pp. 763-768.
[28] G. P. Riboldi, J. Frazzon, P. A. D’Azevedo and A. P. G. Frazzon, “Antimicrobial Resistance Profile of Enterococcus spp Isolated from Food in Southern Brazil,” Brazilian Journal of Microbiology, Vol. 40, 2009, pp. 125-128.
[29] P. Nieto-Arribas, S. Seseña, J. M. Poveda, R. Chicón, L. Cabezas and L. Palop, “Enterococcus Populations in Artisanal Manchego Cheese: Biodiversity, Technological and Safety Aspects,” Food Microbiology, Vol. 28, No. 5, 2011, pp. 891-899.
[30] R. Cariolato, C. Andrighetto and A. Lombardi, “Occurrence of Virulence Factors and Antibiotic Resistances in Enterococcus faecalis and Enterococcus faecium Collected from Dairy and Human Samples in North Italy,” Food Control, Vol. 19, 2008, pp. 886-892.
[31] L. Mannu, A. Paba, D. E. Daga, R. Comunian, S. Zanetti and L. Dupre, “Comparison of the Incidence of Virulence Determinants and Antibiotic Resistance between Enterococcus faecium Strains of Dairy, Animal and Clinical Origin,” International Journal of Food Microbiology, Vol. 88, No. 2-3, 2003, pp. 291-304.
[32] A. M. Martín-Platero, E. Valdivia, M. Maqueda and M. Martínez-Bueno, “Characterization and Safety Evaluation of Enterococci Isolated from Spanish Goats’ Milk Cheeses,” Internecional Journal of Food Microbiology, Vol. 132, 2009, pp. 24-32.
[33] A. B. Flórez, S. Delgado and B. Mayo, “Antimicrobial Susceptibility of Lactic Acid Bacteria Isolated from a Cheese Environment,” Canadian Journal Microbiology, Vol. 51, No. 1, 2005, pp. 51-58.
[34] A. P. G. Frazzon, G. P. Riboldi, J. Frazzon and P. A. D’Azevedo, “Antimicrobial Resistance Profile of Enterococcus spp Isolated from Food in Southern Brazil Brazilian,” Journal of Microbiology, Vol. 40, 2009, pp. 125-128.
[35] S. Morandi, M. Brasca, C. Andrighetto, A. Lombardi and R. Lodi, “Technological and Molecular Characterisation of Enterococci Isolated from North-West Italian Dairy Products,” International Dairy Journal, Vol. 16, No. 8, 2006, pp. 867-875.
[36] C. Novais, T. M. Coque, M. J. Costa, J. C. Sousa, F. Baquero and L. V. Peixe, “High Occurrence and Persistence of Antibiotic-Resistant Enterococci in Poultry Food Samples in Portugal,” Journal of Antimicrobial Chemotherapy, Vol. 56, No. 6, 2005, pp. 1139-1143.
[37] B. Robredo, K. V. Singh, F. Baquero, B. E. Murray and C. Torres, “Vancomycin-Resistant Enterococci Isolated from Animals and Food,” International Journal of Food Microbiology, Vol. 54, No. 3, 2005, pp. 197-204.
[38] L. Rizzotti, F. La Gioia, F. Dellaglio and S. Torriani, “Molecular Diversity and Transferability of the Tetracycline Resistance Gene Tet(M), Carried on Tn916-1545 Family Transposons, in Enterococci from a Total Food Chain,” Antonie Van Leeuwenhoek, Vol. 96, No. 1, 2009, pp. 43-52.
[39] T. L. Poole, M. E. Hume, L. D. Campbell, H. M. Scott, W. Q. Alali and R. B. Harvey, “Vancomycin-Resistant Enterococcus faecium Strains Isolated from Community Wastewater from a Semiclosed Agri-Food System in Texas, Antimicrobial Agents and Chemotherapy, Vol. 49, No. 10, 2005, pp. 4382-4385.
[40] L. Chang, Z. Zhuo-Yang, D. Ke, Y. Jian-Ping and G. Xiao-Kui, “Antibiotic Resistance of Probiotic Strains of Lactic Acid Bacteria Isolated from Marketed Foods and Drugs,” Biomedicala and Environmental Sciences, Vol. 22, No. 5, 2009, pp. 401-412.
[41] S. M. Donabedian, L. A. Thal, E. Hershberger, M. B. Perri, J. W. Chow, P. Bartlett, R. Jones, K. Joyce, S. Rossiter, K. Gay, J. Johnson, C. Mackinson, E. Debess, J. Madden, F. Angulo and M. J. Zervos, “Molecular Characterization of Gentamicin-Resistant Enterococci in the United States: Evidence of Spread from Animals to Humans through Food,” Journal of Clinical Microbiology, Vol. 41, No. 3, 2003, pp. 1109-1113.
[42] R. Joshua, R. Hayes, L. Linda, J. Peggy, Y. Kyung, D. David and D. G. White, “Prevalence and Antimicrobial Resistance of Enterococcus Species Isolated from Retail Meats”, Applied and Environmental Microbiology, Vol. 69, No. 12, 2003, pp. 7153-7160.
[43] I. M. Bell, J. C. Paton and J. Turnidge, “Emergence of Vancomycin-Resistant Enterococci in Australia: Phenotypic and Genotypic Characteristics of Isolates,” Journal of Clinical Microbiology, Vol. 36, 1998, pp. 2187-2190.
[44] S. B. Vakulenko, S. M. Donabedian, A. M. Vorkresenskiy, M. J. Zervos, S. A. Lerner and J. W. Chow, “Multiplex PCR for Detection of Aminoglycoside Resistance Genes in Enterococci,” Antimicrobial Agents Chemotherapy, Vol. 47, No. 4, 2003, pp. 1423-1426.
[45] L. B. Jensen, A. Peter, L. Dons, R. N. Jones, A. M. Hammerum and F. M. Aarestrup, “ Molecular Analysis of the Tn1546 in Enterococcus faecium Isolated from Animals and Humans,” Journal Clinical Microbiology, Vol. 36, 1998. pp. 437-442.
[46] D. Gevers, M. Danielsen, G. Huys and J. Swings, “Molecular Characterization of tet(M) Genes in Lactobacillus Isolates from Different Types of Fermented Dry Sausage,” Applied Environmental Microbiology, Vol. 69, No. 2, 2003, pp. 1270-1275.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.