Analysis of Anaerobic Performance between Futsal and Handball through the Wingate Test

DOI: 10.4236/ape.2014.41004   PDF   HTML     5,114 Downloads   7,573 Views   Citations


Objectives: The purpose of this study was to compare the anaerobic power of amateur futsal and handball players utilizing the Wingate Test. Material and Methods: Twenty-two athletes between the ages of 18 to 21, who agreed to participate in the research after reading and signing the Terms of Free and Clarified Consent, took part in the Wingate Test using 7.5% of their total body mass. The relative and absolute Maximum Power (MP); relative and absolute Average Power (Ap) and Fatigue Rate (FR) were compared. The statistical method used was the non-paired t-student test with a significance level of P < 5%. Results: Handball players presented higher values of absolute MP (879.45 ± 182.22 W) and Ap (671.91 ± 109.37) when compared to the values of MP (749.00 ± 71.94) and Ap (600.42 ± 52.72) of futsal players. However, there was no significant difference when the variables studied were relative to the MP and Ap and Fatigue Rate. Conclusions: Based on these results, it can be concluded that handball presents greater alactic anaerobic power compared to futsal where, most likely, the importance of certain characteristics and specific training contributes to the determination of the predominant metabolic medium during sport practice.

Share and Cite:

Souza, F. , Ferreira, R. , Fagundes, A. , Kawaguchi, L. , Ribeiro, W. & Lazo-Osório, R. (2014). Analysis of Anaerobic Performance between Futsal and Handball through the Wingate Test. Advances in Physical Education, 4, 25-28. doi: 10.4236/ape.2014.41004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] rjmandi, B., Rahnama, N., Bambaeichi, E., Khayambashi, K., & Jafarpour, S. A. (2010) Comparison of bone mineral density values in professional female handball and futsal players and non-athletes.; Medicine and Science in Sports and Exercise, 42, 702.
[2] Malone, J., Coughlan G. F., Crowe L., Gissane G. C., & Caulfield B. (2012) The physiological effects of low-intensity neuromuscular electrical stimulation (NMES) on short-term recovery from supra-maximal exercise bouts in male triathletes. European Journal of Applied Physiology, 112, 2421-2432.
[3] Lericollais, R., Gauthier, A., Bessot, N., & Davenne, D. (201) Diurnal evolution of cycling biomechanical parameters during a 60 s Wingate test. Scandinavian Journal of Medicine & Science in Sports, 21, e106e114.
[4] Fernandez-del-Olmo, M., Rodriguez, F. A., Marquez, G., Iglesias, X., Marina, M., Benitez, A., Vallejo, L., & Acero, R. M. (2011) Isometric knee extensor fatigue following a wingate test: Peripheral and central mechanisms. Scand J Med Sci Sports, 23, 57-65.
[5] Molina, G. E., Rocco, G. F., & Fontana, K. E. (2009) Desempenho da Potência anaeróbia em atletas de elite do mountain Bike submetidos à suplementacao aguda com creatina. Rev. Bra. Med esporte, 15.
[6] Bar-Or O. (1987) The Wingate anaerobic test: An update on methodology, reliability and validity. Sports Medicine, 4, 381-394.
[7] Bello Junior, N. A. (1998) ciência do esporte aplicada ao futsal. Rio de janeiro: Sprint.
[8] Campeiz, J. M., & Oliveira, P. R. (2006) Análise comparativa de variáveis antropométricas anaeróbias de futebolistas profissionais, juniores e juvenis. Movimento & Percepcao, 6, 8.
[9] Colontonio, E., Barros, R. V., & Kiss, M. A. P. D. M. (2003) Consumo de oxigênio em testes de Wingate para membros superiores e inferiores em nadadores e jogadores de polo aquático. Rev. Bras. Med. Esporte, 9, 136-144.
[10] ConsensoNacionaldeErgometria (1995) ArqBrasCardiol, 65, 2.
[11] Franchini, E. (2005) Teste de Wingate: Conceitos e aplicao. Rev Mackenzie de Educao Física e Esporte, 1, 11-27.
[12] Glaister, M. (2005) Multiple sprint work: Physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Medicine, 35, 757-777.
[13] Gastin, P. B. (2001) Energy system interaction and relative contribution during maximal exercise. Sports Medicine, 31, 725-741.
[14] Inbar O., Bar Or O., & Skinner, J. S. (1996) The Wingate Anaerobic Test. Chaimpaign, IL: Kinetics.
[15] Lima, A. M. J., Silv,a D. V. G., & Souza, A. O. S. (2005) Correlacao entre medidas direta e indireta do VO2 máx em atletas de futsal. Rev Bras Med Esporte, 11, 164-166.
[16] Rannou, F., Priorex, J., Zorehal, H., Gratos Delamarche, A., & Delamarche, P. (2001) Physiological profile of Handball players. Journal of Sports Medicine and Physical Fitness, 41, 349-353.
[17] Ribeiro, C. Z. P., Akashi, P. M. H., Sacco, I. C. N., & Pedrinelli, A. (2003) Relationship between postural changes and injuries of the locomotor system in indoor soccer athletes. Rev Bras Med Esporte, 9, 98-103.
[18] Ronglan, L. T., Raastad, T., & Borgesen, A. (2006) Neuromuscular fatigue and recovery in elite female handball players. Scand J. Med. Sci. Sports, 16, 267-273.
[19] Okano, A. H., et al. (2001) Efeito da aplicao de diferentes cargas sobre o desempenho motor no teste de wingate. Rev. Bras. De Ciência e Movimento, 9, 7-11.
[20] Thomas, C., Plowman, S. A., & Looney, M. A. (2002) Reability and validity of the anaerobic speed test and the field anaerobic shuttle test for measuring anaerobic work capacity in soccer players. Anaerobic Work Capacity, 6, 187-205.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.