Similarity Reduction of Nonlinear Partial Differential Equations

DOI: 10.4236/jamp.2014.23003   PDF   HTML   XML   3,590 Downloads   5,922 Views   Citations

Abstract

In this work, the HB method is extended to search for similarity reduction of nonlinear partial differential equations. This method is generalized and will apply for a (2 + 1)-dimensional higher order Broer-Kaup System. Some new exact solutions of Broer-Kaup System are found.

Share and Cite:

Al-Johani, A. (2014) Similarity Reduction of Nonlinear Partial Differential Equations. Journal of Applied Mathematics and Physics, 2, 22-32. doi: 10.4236/jamp.2014.23003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. A. Zedan, “Exact Solutions for the Generalized KdV Equation by Using Backlund Transformations,” Journal of the Franklin Institute, Vol. 348, No. 8, 2011, pp. 1751-1768. http://dx.doi.org/10.1016/j.jfranklin.2011.04.013
[2] D.-S. Li, et al., “Solving the (2 + 1)-Dimensional Higher Order Broer-Kaup System via a Transformation and Tanh-Function mEthod,” Chaos, Solitons & Fractals, Vol. 20, No. 5, 2004, pp. 1021-1025. http://dx.doi.org/10.1016/j.chaos.2003.09.006
[3] J. Mei, et al., “New Soliton-Like and Periodic Solution of (2 + 1)-Dimensional Higher Order Broer-Kaup System,” Chaos, Solitons & Fractals, Vol. 22, No. 3, 2004, pp. 669-674. http://dx.doi.org/10.1016/j.chaos.2004.02.023
[4] D.-S. Li, et al., “Some New Types of Multisoliton Solutions for the (2 + 1)-Dimensional Higher-Order Broer-Kaup System,” Applied Mathematics and Computation, Vol. 152, No. 3, 2004, pp. 847-853. http://dx.doi.org/10.1016/S0096-3003(03)00601-5
[5] E. G. Fan and H. Q. Zhang, “A Note on the Homogeneous Balance Method,” Physics Letters A, Vol. 246, No. 5, 1998, pp. 403-406.
[6] E. G. Fan, “Two New Applications of the Homogeneous Balance Method,” Physics Letters A, Vol. 265, No. 5-6, 2000, pp. 353-357. http://dx.doi.org/10.1016/S0375-9601(00)00010-4
[7] G. Bluman, “Symmetries and Differential Equations,” Springer-Verlag, New York, 1989. http://dx.doi.org/10.1007/978-1-4757-4307-4
[8] P. J. Olver, “Applications of Lie Group to Differential Equation,” Springer-Verlag, New York, 1986. http://dx.doi.org/10.1007/978-1-4684-0274-2
[9] P. A. Clarkson, “New Similarity Solutions for the Modified Boussinesq Equation,” Journal of Physics A: Mathematical and General, Vol. 22, No. 13, 1989, pp. 2355-2365. http://dx.doi.org/10.1088/0305-4470/22/13/029
[10] Y. Yu, Q. Wang and H. Q. Zhang, “The Extended Jacobi Elliptic Function Method to Solve a Generalized Hirota-Satsuma Coupled KdV Equations,” Chaos, Solitons & Fractals, Vol. 26, No. 5, 2005, pp. 1415-1421. http://dx.doi.org/10.1016/j.chaos.2005.04.011
[11] J. L. Zhang, M. L. Wang, Y. M. Wang, Z. D. Fang, “The Improved F-Expansion Method and Its Applications,” Physics Letters A, Vol. 350, No. 1-2, 2006, pp. 103-109. http://dx.doi.org/10.1016/j.physleta.2005.10.099
[12] E. M. E. Zayed and H. Zedan, “On the Solitary Wave Solutions for Nonlinear Hirota-Satsuma Coupled KdV of Equations,” Chaos, Solitons & Fractals, Vol. 22, No. 2, 2004, pp. 285-303. http://dx.doi.org/10.1016/j.chaos.2003.12.045
[13] A. M. Wadati, “Introduction to Solitons,” Pramana: Journal of Physics, Vol. 57, No. 5-6, 2001, pp. 841-847.
[14] Z. Chen, D. H. Zhao and J. Ruan, “Dynamic Analysis of High-Order Cohen-Grossberg Neural Networks with Time Delay,” Chaos, Solitons & Fractals, Vol. 32, No. 4, 2007, pp. 1538-1546. http://dx.doi.org/10.1016/j.chaos.2005.11.095
[15] Hassan A. Zedan, “Solution of (3 + 1) - Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform Method,” Mathematical Problems in Engineering, Vol. 2012, 2012, 14 p.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.