Share This Article:

Magnetometry and Hyperthermia Study of Magnetic Fluid Preparation UNIMAG

Abstract Full-Text HTML XML Download Download as PDF (Size:1418KB) PP. 6-12
DOI: 10.4236/wjcmp.2014.41002    3,539 Downloads   5,365 Views   Citations

ABSTRACT

We investigated the hyperthermal and magnetic properties of the stable magnetic suspension of magnetite nanoparticles. With this purpose in mind, we designed a low-frequency oscillator, 300 W, 300 KHz. A sample of the magnetic suspension was placed in the induction coil and heated up to 55°C for 30 minutes. Based on the results of measurements of transverse susceptibility, we can infer that the suspension was superparamagnetic at room temperature and transformed into the magnetic state at nitrogen temperature. Comparing the obtained experimental results with the literature data, we assessed the mean size of nanoparticles, which made up about 10 nm. Computer simulation assessment on the basis of magnetization curve gives close results.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

G. Mamniashvili, S. Mikeladze, Т. Gegechkori, B. Surguladze, G. Pichkhaia, A. Akhalkatsi, D. Daraselia and D. Japaridze, "Magnetometry and Hyperthermia Study of Magnetic Fluid Preparation UNIMAG," World Journal of Condensed Matter Physics, Vol. 4 No. 1, 2014, pp. 6-12. doi: 10.4236/wjcmp.2014.41002.

References

[1] R. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrott and C. B. Taylor, “Selective Inductive Heating of Lymph Nodes,” Annals of Surgery, Vol. 146, No. 4, 1957, pp. 596-606.
http://dx.doi.org/10.1097/00000658-195710000-00007
[2] R. Hergt, W. Andra, C. G. D’Ambly, I. Hilger, W. A. Kaiser, U. Richter and H.-G. Schmidt, “Physical Limits of Hyperthermia Using Magnetite Fine Particles,” IEEE Transactions on Magnetics, Vol. 34, No. 5, 1998, pp. 3745-3754. http://dx.doi.org/10.1109/20.718537
[3] Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson, “Applications of Magnetic Nanoparticles in Biomedicine,” Journal of Physics D: Applied Physics, Vol. 36, No. 13, 2003, pp. R167-R181.
http://dx.doi.org/10.1088/0022-3727/36/13/201
[4] Q. A. Pankhurst, N. T. K. Thanh, S. K. Jones and J. Dobson, “Progress in Applications of Magnetic Nanoparticles in Biomedicine,” Journal of Physics D: Applied Physics, Vol. 42, No. 22, 2009, 15 p.
[5] G. C. Papaefthymiou, “Nanoparticle Magnetism,” Nano Today, Vol. 4, No. 5, 2009, pp. 438-447.
http://dx.doi.org/10.1016/j.nantod.2009.08.006
[6] C. C. Berry and A. S. G. Curtis, “Functionalisation of Magnetic Nanoparticles for Applications in Biomedicine,” Journal of Physics D: Applied Physics, Vol. 36, No. 13, 2003, pp. R198-R206.
http://dx.doi.org/10.1088/0022-3727/36/13/203
[7] J. M. Koziara, P. R. Lockman and R. J. Mumper, “In Situ Blood-Brain Barrier Transport of Nanoparticles,” Pharmaceutical Research, Vol. 20, No. 11, 2003, pp. 17721778.
http://dx.doi.org/10.1023/B:PHAM.0000003374.58641.62
[8] P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. González-Carreno and C. J. Serna, “The Preparation of Magnetic Nanoparticles for Applications in Biomedicine,” Journal of Physics D: Applied Physics, Vol. 36, No. 13, 2003, pp. R182-R197.
http://dx.doi.org/10.1088/0022-3727/36/13/202
[9] R. Lutidze, B. Tkeshelashvili, G. Burkadze and B. V. Surguladze, “The Echo-Contrasting Ability of the Medical Magnetic Fluid Unimag and Its Peculiarities During the Elimination from the Body in an Experiment,” Georgian Medical News, Vol. 152, No. 11, 2007, pp. 60-63.
[10] B. Surguladze, Z. Zautashvili, G. Burkadze, Sh. Gelashvili, N. Gribanov and T. Tskitishvili, “New Method of Sentinel Lymph Node Detection in Malignant Tumors by Using the Preparation Unimag,” Proceedings of the 6th International Conference on Scientific and Clinical Applications of Magnetic Carriers, 2006 (Poster presentation). http://www.magneticmicrosphere.com/meetings/meet2006/posters.php
[11] B. Surguladze, R. Zhorzoliani and T. Tskitishvili, “Novel Method of Sentinel Lymph Node Detection in Malignant Tumors Using Preparation UNIMAG,” Magnetic Fluids in Medicine and Biology, ATT Ltd., Georgia, Breast Cancer Research, 2007, p. 15.
http://dx.doi.org/10.1186/bcr1721
[12] B. Surguladze, A. Baghishvili, T. Tskitishvili and N. Gribanov, “Ultrasound Imaging of Sentinel Lymph Nodes in the Patients with Breast Cancer by Using the Preparation Unimag,” Proceedings of the 7th International Conference on Scientific and Clinical Applications of Magnetic Carriers, 2008, (Oral Presentation).
http://www.magneticmicrosphere.com/meetings/meet2008/index.php
[13] W. C. Elmore, “The Magnetization of Ferromagnetic Colloids,” Physical Reviews, Vol. 54, No. 12, 1938, pp. 1092-1095. http://dx.doi.org/10.1103/PhysRev.54.1092
[14] N. M. Gribanov, E. E. Bibik, O. V. Buzunov and V. N. Naumov, “Physicochemical Regularities of Obtaining of Highly Dispersed Magnetite by the Method of Chemical Condensation,” Journal of Magnetism and Magnetic Materials, Vol. 85, No. 1-3, 1990, pp. 7-10.
http://dx.doi.org/10.1016/0304-8853(90)90005-B
[15] B. E. Kashevsky, V. E. Agabekov, S. B. Kashevsky, K. A. Kekalo, E. Yu. Manina, I. V. Prokhorov and V. S. Ulashchik, “Study of Cobalt Ferrite Nanosuspensions for LowFrequency Ferromagnetic Hyperthermia,” Particuology, Vol. 6, No. 5, 2008, pp. 322-333.
http://dx.doi.org/10.1016/j.partic.2008.07.001
[16] A. L. Figueroa, J. Bartolomé, J. M. García del Pozo, A. Arauzo, E. Guerrero, P. Téllez, F. Bartolomé and L. M. García, “Low-Temperature Radio-Frequency Transverse Susceptibility Measurements Using a CMOS Oscillator Circuit,” Journal of Magnetism and Magnetic Materials, Vol. 324, No. 17, 2012, pp. 2669-2675.
http://dx.doi.org/10.1016/j.jmmm.2012.03.058
[17] V. I. Petrenko, V. L. Aksenov, M. V. Avdeev, L. A. Bulavin, L. Rosta, L. Vekas, V. M. Garamus and R. Willumeit, “Analysis of the Structure of Aqueous Ferrofluids by the Small-Angle Neutron Scattering Method,” Physics of the Solid State, Vol. 52, No. 5, 2010, pp. 974-978.
http://dx.doi.org/10.1134/S1063783410050185
[18] M. V. Avdeev, V. L. Aksenov and A. V. Feoktystov, “On Determination of ‘Atomic’ and ‘Magnetic’ Sizes of Nanoparticles in Ferrofuids by Means of Small-angle Neutron Scattering,” Communication of the Joint Institute for Nuclear Research, Dubna, 2011.
[19] R. S. DiPietro, H. G. Johnson, S. P. Bennett, T. J. Nummy, L. H. Lewis and D. Heiman, “Determining the Magnetic Nanoparticle Size Distributions from Thermomagnetic Measurements,” Applied Physics Letters, Vol. 96, No. 22, 2010, 3 p.
[20] K. Enpuku, T. Tanaka, Y. Tamai, F. Dang, N. Enomoto, J. Hojo, H. Kanzaki and N. Usuki, ”Size Distribution of Magnetic Marker Estimated from AC Susceptibility in Solution for Biosensor Application,” Japanese Journal of Applied Physics, Vol. 47, No. 10, 2008, pp. 7859-7865.
http://dx.doi.org/10.1143/JJAP.47.7859
[21] W. Liu, M. Zhou and L. Kong, “Estimation of the Size Distribution of Magnetic Nanoparticles Using Modified Magnetization Curves,” Measurement Science and Technology, Vol. 20, No. 12, 2009, pp. 125802-125809.
http://dx.doi.org/10.1088/0957-0233/20/12/125802
[22] M. Zhou, W. Liu and L. Kong, “Estimation of Magnetic Nano-Particles Size Distribution Using Their Magnetization Curve,” Proceedings of the 5th International Symposium on Instrumentation Science and Technology, 2009, pp. 71334M1-71334M7.
[23] A. N. Tikhonov, “Solution of Incorrectly Formulated Problems and the Regularization Method,” Soviet Mathematics Doklady, Vol. 4, No. 4, 1963, pp. 1035-1038.
[24] A. N. Tikhonov, “Regularization of Incorrectly Posed Problems,” Soviet Mathematics Doklady, Vol. 4, No. 6, 1963, pp. 1624-1627.
[25] А. N. Tikhonov and V. Y. Arsenin, “Solutions of Ill-Posed Problems,” Wiley, New York, 1977.
[26] A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov and A. G. Yagola, “Numerical Methods for the Solution of IllPosed Problems,” Academic Publishers, Kluwer, 1995.
http://dx.doi.org/10.1007/978-94-015-8480-7
[27] N. S. Bakhvalov, N. P. Jidkov and G. М. Kobelkov, “Numerical methods,” Nauka, Moscow, 1987.
[28] G. P. Bean and I. S. Jacobs, “Magnetic Granulometry and Super Paramagnetism,” Journal of Applied Physics, Vol. 7, No. 12, 1956, pp. 1448-1452.
http://dx.doi.org/10.1063/1.1722287
[29] R. E. Rosensweig, “Ferrohydrodynamic,” Cambridge University Press, Cambridge, 1985.
[30] E. Romanus, D. V. Berkov, S. Prass, C. Gross, W. Weitschies and P. Weber, “Determination of Energy Barrier Distributions of Magnetic Nanoparticles by Temperature Dependent Magnetorelaxometry,” Nanotechnology, Vol. 14, No. 12, 2003, pp. 1251-1254.
http://dx.doi.org/10.1088/0957-4484/14/12/003
[31] G. F. Berkov, P. Gornert, N. Buske, C. Gansau, J. Mueller, M. Giersig, W. Neumann and D. Su, “New Method for the Determination of the Particle Magnetic Moment Distribution in a Ferrofluid,” Journal of Physics D: Applied Physics, Vol. 33, No. 4, 2000, pp. 331-337.
http://dx.doi.org/10.1088/0022-3727/33/4/303
[32] V. D. Goya, T. S. Berquo, F. C. Fonseca and M. P. Morales, “Static and Dynamic Magnetic Properties of Spherical Magnetite Nanoparticles,” Journal of Applied Physics, Vol. 94, No. 5, 2003, pp. 3520-3528.
http://dx.doi.org/10.1063/1.1599959

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.