[1]
|
J. Choi, A. C. de C. Lima and S. Haykin, “Kalman Filter-Trained Recurrent Neural Equalizers for Time-Varying Channels,” IEEE Transactions on Communication, Vol. 3, No. 3, 2005, pp. 472-480. http://dx.doi.org/10.1109/TCOMM.2005.843416
|
[2]
|
P. Corral, O. Ludwig and A. C. de C. Lima, “Time-Varying Channel Neural Equalization Using Gauss-Newton Algorithm,” Eletronics Letters, Vol. 46, No. 15, 2010, pp. 1055-1056.
|
[3]
|
Z. Chen and A. C. de C. Lima, “A New Neural Equalizer for Decision-Feedback Equalization,” IEEE Signal Processing Society Workshop, 2004, pp. 675-684.
|
[4]
|
F. J. González-Serrano, F. Pérez-Cruz and A. Artés-Rodríguez, “Reduced-Complexity Equaliser for Nonlinear Channels,” Eletronics Letters, Vol. 34, No. 9, 1998, pp. 856-858.
|
[5]
|
H. Q. Zhao, X. P. Zeng, Z. Y. He, W. D. Jin and T. R. Li, “Complex-Valued Pipelined Decision Feedback Recurrent Neural Network for Non-Linear Channel Equlisation,” Electronics Letters, Vol. 6, No. 9, 2012, pp. 1082-1096.
|
[6]
|
H. Leung and S. Haykin, “The Complex Backpropagation Algorithm,” IEEE Transactions on Signal Processing, Vol. 3, No. 9, 1991, pp. 2101-2104. http://dx.doi.org/10.1109/78.134446
|
[7]
|
N. Benvenuto and F. Piazza, “On the Complex Backpropagation Algorithm,” IEEE Transactions on Signal Processing, Vol. 40, No. 4, 1992, pp. 967-969. http://dx.doi.org/10.1109/78.127967
|
[8]
|
T. Kim and T. Adali, “Fully Complex Multi-Layer Perceptron Network for Nonlinear Signal Processing,” The Journal of VLSI Signal Processing, Springer, Berlin, 2002.
|
[9]
|
M. Peng, C. L. Nikias and J. G. Proakis, “Adaptive Equalization with Neural Networks: New Multi-Layer Perceptron Structures and Their Evaluation,” IEEE International Conference on Acoustics, Speech, and Signal Processing, San Francisco, 23-26 March 1992, pp. 301-304.
|
[10]
|
A. Shafi, A. Zerguine and M. Bettayeb, “Neural NetworkBased Decision Feedback Equalizer with Lattice Structure,” Eletronics Letters, Vol. 35, No. 20, 1999, pp. 1705-1707.
|
[11]
|
F. Ling and J. G. Proakis, “Adaptive Lattice DecisionFeedback Equalizer—Their Performance and Application to Time-Variant Multipath Channels,” IEEE Transactions on Communication, Vol. COM-33, No. 4, 1985, pp. 348-356. http://dx.doi.org/10.1109/TCOM.1985.1096300
|
[12]
|
G. Kechriotis, E. Zervas and E. S. Manolakos, “Using Recurrent Neural Networks for Adaptive Communication Channel Equalizations,” IEEE Transactions on Neural Networks, Vol. 5, No. 2, 1994, pp. 267-278. http://dx.doi.org/10.1109/72.279190
|
[13]
|
S. Lawrence, C. L. Giles and A. C. Tsoi, “Lessons in Neural Network Training: Overfitting May Be Harder than Expected,” Proceedings of the 14th National Conference on Artificial Intelligence, AAAI-97, AAAI Press, Menlo Park, California, 1997, pp. 540-545.
|
[14]
|
K. Mahdaviani, H. Mazyar, S. Majidi and M. H. Saraee, “A Method to Resolve the Overfitting Problem in Recurrent Neural Networks for Prediction of Complex Systems’ Behavior,” International Joint Conference on Neural Networks, Hong Kong, 1-8 June 2008, pp. 3723-3728.
|