Genetic characterization of far eastern species of the genus Crepidostomum (Trematoda: Allocreadiidae) by means of 28S ribosomal DNA sequences


Genetic divergence and phylogenetic relationships of four species of the genus Crepidostomum Braun, 1900 sensu Caira, Bogea (2005) were revealed using partial sequences of 28S ribosomal RNA gene. Genetic divergence between C. cf. farionis (Muller, 1784) and C. nemachilus Krotov, 1959 was 3.1%, which corresponds to the mean value of interspecific divergence between Crepidostomum species. These two species, therefore, can be recognized as bonafide species. However, we found no genetic differences between 28S rRNA gene sequences of C. nemachilus and C. cf. metoecus Braun,1900 inspite of considerable morphological and ecological differences. Maximal values of genetic p-distances were revealed between C. cf. auriculatum Wedl, 1857 and C. cf. farionis. Phylogenetic relationships of Crepidostomum spp. for which sequence data are available, along with species in other related genera (Bunodera Railliet, 1896 and Allocreadium Loss, 1900) showed a paraphyly of the genus Crepidostomum. Considerable differentiation of C. cf. auriculatum from other Crepidostomum species was revealed, which may reflect the original description of this species in a separate genus Acrolichanus Ward, 1917. Our results are consistent with the conventional systematics that places the four genera (Crepidostomum, Bunodera, Megalogonia and Allocreadium) within the same family.

Share and Cite:

Atopkin, D. and Shedko, M. (2014) Genetic characterization of far eastern species of the genus Crepidostomum (Trematoda: Allocreadiidae) by means of 28S ribosomal DNA sequences. Advances in Bioscience and Biotechnology, 5, 209-215. doi: 10.4236/abb.2014.53027.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Skrjabin, K.I. and Koval, V.P. (1966) The superfamily Allocreadioidea Nicoll. 1934. In: Skrjabin, K.I. and Koval, V.P., Eds., Trematodes of Animals and Man and the Diseases Caused by Them, Publ. House Nauka, Moscow, 175-517.
[2] Bykhovskaya-Pavlovskaya, X.E. and Kulakova, A.P. (1987) Identification guide of parasites of freshwater fishes of USSR fauna. Trematoda. Publ. House Nauka, Leningrad.
[3] Caira, N.J. (1989) A revision of the North American papillose Allocreadiidae (Digenea) with independent cladistic analyses of larval and adult forms. Bulletin of The University of Nebraska State Museum, 11, 1-55.
[4] Caira, J.N. and Bogea, T. (2005) Keys to the Trematoda. family Allocreadiidae. CABI Publishing and the Natural History Museum, Walingford.
[5] Zd’arska, Z. and Nebesarova, J. (2002) Ultrastructure of pigmented photoreceptor of adult Crepidostomum metoecus (Trematoda: Bunoderidae). Folia Parasitologica, 49, 165-166.
[6] Platta, C. and Choudhury, A. (2006) Systematic position and relationships of Paracreptotrematina limi, based on partial sequences of 28S rRNA and cytochrome c oxidase subunit 1 genes. Journal of Parasitology, 92, 411-413.
[7] Perez-Ponce de Leon, G., Choudhury, A., Rozas-Valdes, R. and Mejia-Madrid, H. (2007) The systematic position of Wallinia spp. and Margotrema spp. (Digenea), parasites of Middle-American and Neotropical freshwater fishes, based on the 28S ribosomal RNA gene. Systematic Parasitology, 68, 49-55.
[8] Choudhury, A., Valdes, R.R., Johnson, R.C., Hoffman, B. and Perez-Ponce de Leon, G. (2007) The phylogenetic position of Allocreadiidae (Trematoda: Digenea) from partial sequences of the 18S and 28S ribosomal RNA genes. Journal of Parasitology, 93, 192-196.
[9] Layman, E.M. (1930) Parasitic worms from fishes of Peter the Great Bay. Bulletin of Pacific Fishery Research Station, 3, 1-120.
[10] Krotov, A.I. (1959) Two new parasitic worms from vertebrates of Sakhalin Island. Acta Veterenaria Hungarica, 9, 7-12.
[11] Shimazu, T. (1990) Trematodes of the genus Crepidostomum (Digenea: Allocreadiidae: Crepidostominae) from freshwater fishes of Japan. Journal of Nagano Prefectural College, 45, 1-14.
[12] Choudhury, A. (1997) Parasites of lake sturgeon, Acipenser fulvescens: Systematics and biogeography. PhD Dissertation, University of Manitoba Press, Manitoba.
[13] Linton, E. (1987) Notes on the trematode parasites of fishes. Proceedings of the United States National Museum, 2, 507-548.
[14] Skwortzoff, A.A. (1927) To the anatomy of the trematode Acrolichanus auriculatus (Wedl, 1856) in the sterlet of Volga River basin. Proceedings by Helminthology dedicated to Professor K.I. Skrjabin, 1, 276-286.
[15] Skwotzoff, A.A. (1928) Uber die Helminthenfauna des Wolgasterlets. Zoologische Jahrbucher, 54, 557-577.
[16] Hopkins, S.H. (1933) The morphology, life histories and relationships of the papillose Allocreadiidae (Trematoda). Preliminary Report. Zoologische Anzeiger, 103, 65-74.
[17] Kaw, B.L. (1944) Studies of the helminth parasites of Kashmir. Part III. Description of a new allocreaid, Crepidostomum indicum from a freshwater fish, Schizothorax niger, from the Dal Lake, Kashmir. Proceedings of the Indian Academy of Science, Series Biology, 20, 72-77.
[18] Skrjabina, E.S. (1974) Helminthes of acipenserid fishes (Acipenserdae Bonaparte, 1831). Publ. House Nauka, Moscow, 1974.
[19] Shul’man, S.S. (1954) A review of parasite fauna of fishes of the USSR. Proceedings of Leningrad Society of Naturalists, 72, 190-254.
[20] Hopkins, S.H. (1934) The papillose Allocreadiidae. A study of their morphology, life histories and relationships. Illinois Biological Monographs, 13, 6-77.
[21] Tkach, V.V., Littlewood, D.T.J., Olson, P.D., Kinsella, J.M. and Swiderski, Z. (2003) Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Systematic Parasitology, 56, 1-15.
[22] Bray, R.A., Waeschenbach, A., Cribb, T.H., Weedall, G.D., Dyal, P. and Littlewood, D.T.J. (2009) The phylogeny of the Lepocreadiidae (Platyhelminthes: Digenea) inferred from nuclear and mitochondrial genes: Implications for their systematics and evolution. Acta Parasitologica, 54, 310-329.
[23] Tamura, K, Peterson, D, Peterson, N., Stecher, G, Nei, M. and Kumar S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731-2739.
[24] Huelsenbeck, J.P. (2000) Mr Bayes: Bayesian inference of phylogeny. Department of Biology, University of Rochester, Rochester.
[25] Posada, D. and Crandall, K.A. (1998) Modeltest: Testing the model of DNA substitution. Bioinformatics, 14, 817-818.
[26] Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions of Automatic Control, 19, 716-723.
[27] Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using bootstrap. Evolution, 39, 783-791.
[28] Huelsenbeck, J.P., Ronquist, F., Nielsen, R. and Bollback, J.P. (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294, 2310-2314.
[29] Kishino, H. and Hasegawa, M. (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution, 29, 170-179.
[30] Shimodaira, H. and Hasegawa, M. (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution, 16, 1114-1116.
[31] Shimodaira H. and Hasegawa M. (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution, 16, 1114-1116.
[32] Swofford, D.L. (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland.
[33] Roitman, V.A. and Sokolov, S.G. (1999) Taxonomic analysis of Bunodera luciopercae (Muller, O.F., 1776) in Palearctic region of its area. Interrelationships of parasite and host, Institute of Parasitology, Moscow, 73-87.
[34] Sokolov, S.G., Tseitlin, D.G., Afanasyev, K.I., Malinina, T.V. and Rubtsova, G.A. (2006) A comparative study of two sympatric subspecies of trematodes, Bunodera luciopercae luciopercae (Muller, 1776) and B. l. acerinae Roitman et Sokolov, 1999 (Trematoda: Bunoderidae). Invertebrate Zoology, 3, 209-223.
[35] Petkeviciute, R., Stunzenas, V., Staneviciute, G. and Sokolov, S.G. (2010) Comparison of the developmental stages of some European allocreadiid trematode species and a clarification of their life cycles based on ITS 2 and 28S sequences. Systematic Parasitology, 76, 169-178.
[36] Nolan, M.J. and Cribb, T.H. (2005) The use and implication of ribosomal DNA sequencing for the discrimination of digenean species. Advances in Parasitology, 60, 101-163.
[37] Otranto, D., Rehbein, S., Weigl, S., Cantacelli, C., Parisi, A., Lia, R.P. and Olson, P.D. (2007) Morphological and molecular differentiation between Dicrocoelum dendriticum (Rudolphi, 1819) and Dicrocoelum chinensis (Sudarikov and Ryjikov, 1951) Tang and Tang, 1978 (Platyhelminthes: Digenea). Acta Tropica, 104, 91-98.
[38] Maurelli, M.P., Rinaldi, L., Capuano, F., Perugini, A.G., Veneziano, V. and Cringoli, G. (2007) Characterization of the 28S and the second transcribed spacer of ribosomal DNA of Dicrocoelum dendriticum and Dicrocoelum hospes. Parasitology Research, 101, 1251-1255.
[39] Choudhury, A. and Regagnon, V.L. (2005) Molecular phylogenetics and biogeography of Bunodera spp. (Trematoda: Allocreadiidae), parasites of percid and gasterosteid fishes. Canadian Journal of Zoology, 83, 1540-1546.
[40] Curran, S.S., Tkach, V.V. and Overstreet, R.M. (2006) A review of Polylekithum Arnold, 1934 and its familial affinities using morphological and molecular data, with description of Polylekithum catahoulensis sp. nov. Acta Parasitologica, 51, 238-248.
[41] Moravec, F. (2002) External morphological differences between Crepidostomum farionis and Crepidostomum metoecus (Trematoda: Allocreadiidae), parasites of salmonids, as revealed by SEM. Folia Parasitologica, 49, 211-217.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.