Spine Stereotactic Body Radiation Therapy Residual Setup Errors and Intra-Fraction Motion Using the Stereotactic X-Ray Image Guidance Verification System

Abstract

Purpose: To determine the precision of our institution’s current immobilization devices for spine SBRT, ultimately leading to recommendations for appropriate planning margins. Methods: We identified 12 patients (25 treatments) with spinal metastasis treated with spine Stereotactic Body Radiation Therapy (SBRT). The Body-FIX system was used as immobilization device for thoracic (T) and lumbar (L) spine lesions. The head and shoulder mask system was used as immobilization device for cervical (C) spine lesions. Initial patient setup used the infrared positioning system with body markers. Stereotactic X-ray imaging was then performed and correction was made if the initial setup error exceeded predetermined institutional tolerances, 1.5 mm for translation and 2° for rotation. Three additional sets of verification X-rays were obtained pre-, mid-, and post-treatment for all treatments. Results: Intrafraction motion regardless of immobilization technique was found to be 1.28 ± 0.57 mm. The mean and standard deviation of the variances along each direction were as follows: Superior-inferior, 0.56 ± 0.39 mm and 0.77 ± 0.52 mm, (p = 0.25); Anterior-posterior, 0.57 ± 0.43 mm and 1.14 ± 0.61 mm, (p = 0.01); Left-right, 0.48 ± 0.34 mm and 0.74 ± 0.40 mm, (p = 0.09) respectively. There was a significantly greater difference in the average 3D variance of the BodyFIX as compared to the head and shoulder mask immobilization system, 1.04 ± 0.46 mm and 1.71 ± 0.52 mm; (p = 0.003) respectively. Conclusions: Overall, our institution’s image guidance system using stereotactic X-ray imaging verification provides acceptable localization accuracy as previously defined in the literature. We observed a greater intrafraction motion for the head and shoulder mask as compared with the BodyFIX immobilization system, which may be a result of greater C-spine mobility and/or the suboptimal mask immobilization. Thus, better immobilization techniques for C-spine SBRT are needed to reduce setup error and intrafraction motion. We are currently exploring alternative C-spine immobilization techniques to improve set up accuracy and decrease intrafraction motion during treatment.

Share and Cite:

K. Yamoah, N. Zaorsky, J. Siglin, W. Shi, M. Werner-Wasik, D. Andrews, A. Dicker, V. Bar-Ad and H. Liu, "Spine Stereotactic Body Radiation Therapy Residual Setup Errors and Intra-Fraction Motion Using the Stereotactic X-Ray Image Guidance Verification System," International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, Vol. 3 No. 1, 2014, pp. 1-8. doi: 10.4236/ijmpcero.2014.31001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. A. Finn, F. D. Vrionis and M. H. Schmidt, “Spinal Radiosurgery for Metastatic Disease of the Spine,” Cancer Control: Journal of the Moffitt Cancer Center, Vol. 14, No. 4, 2007, pp. 405-411.
[2] P. C. Gerszten, S. A. Burton, C. Ozhasoglu, W. J. Vogel, W. C. Welch, J. Baar, D. M. Friedland, “Stereotactic Radiosurgery for Spinal Metastases from Renal Cell Carcinoma,” Journal of neurosurgery Spine, Vol. 3, No. 4, 2005, pp. 288-295.
http://dx.doi.org/10.3171/spi.2005.3.4.0288
[3] P. C. Gerszten, S. A. Burton, A. E. Quinn, S. S. Agarwala and J. M. Kirkwood, “Radiosurgery for the Treatment of Spinal Melanoma Metastases,” Stereotactic and Functional Neurosurgery, Vol. 83, No. 5-6, 2005, pp. 213-221.
http://dx.doi.org/10.1159/000091952
[4] Q. N. Nguyen, A. S. Shiu, L. D. Rhines, H. Wang, P. K. Allen, X. S. Wang and E. L. Chang, “Management of Spinal Metastases from Renal Cell Carcinoma Using Stereotactic Body Radiotherapy,” International Journal of Radiation Oncology, Biology, Physics, Vol. 76, No. 4, 2010, pp. 1185-1192.
http://dx.doi.org/10.1016/j.ijrobp.2009.03.062
[5] A. Sahgal, D. A. Larson and E. L. Chang, “Stereotactic Body Radiosurgery for Spinal Metastases: A Critical Review,” International Journal of Radiation Oncology, Biology, Physics, Vol. 71, No. 3, 2008, pp. 652-665.
http://dx.doi.org/10.1016/j.ijrobp.2008.02.060
[6] F. F. Yin, S. Ryu, M. Ajlouni, J. Zhu, H. Yan, H. Guan, K. Faber, J. Rock, M. Abdalhak, L. Rogers, et al., “A Technique of Intensity-Modulated Radiosurgery (IMRS) for Spinal Tumors,” Medical Physics, Vol. 29, No. 12, 2002, pp. 2815-2822. http://dx.doi.org/10.1118/1.1521722
[7] A. Sahgal, L. Ma, I. Gibbs, P. C. Gerszten, S. Ryu, S. Soltys, V. Weinberg, S. Wong, E. Chang, J. Fowler, et al., “Spinal Cord Tolerance for Stereotactic Body Radiotherapy,” International Journal of Radiation Oncology, Biology, Physics, Vol. 77, No. 2, 2010, pp. 548-553.
http://dx.doi.org/10.1016/j.ijrobp.2009.05.023
[8] A. Sahgal, L. Ma, V. Weinberg, I. C. Gibbs, S. Chao, U. K. Chang, M. Werner-Wasik, L. Angelov, E. L. Chang, M. J. Sohn, et al., “Reirradiation Human Spinal Cord Tolerance for Stereotactic Body Radiotherapy,” International Journal of Radiation Oncology, Biology, Physics, Vol. 82, No. 1, 2012, pp. 107-116.
http://dx.doi.org/10.1016/j.ijrobp.2010.08.021
[9] S. I. Ryu, D. H. Kim and S. D. Chang, “Stereotactic Radiosurgery for Hemangiomas and Ependymomas of the Spinal Cord,” Neurosurgical Focus, Vol. 15, No. 5, 2003, pp 1-5. http://dx.doi.org/10.3171/foc.2003.15.5.10
[10] A. K. Ho, D. Fu, C. Cotrutz, S. L. Hancock, S. D. Chang, I. C. Gibbs, C. R. Maurer Jr. and J. R. Adler Jr., “A Study of the Accuracy of Cyberknife Spinal Radiosurgery Using Skeletal Structure Tracking,” Neurosurgery, Vol. 60, No. 2, 2007, pp. ONS147-ONS156; discussion ONS156.
[11] F. F. Yin, Z. Wang, S. Yoo, Q. J. Wu, J. Kirkpatrick, N. Larrier, J. Meyer, C. G. Willett and L. B. Marks, “Integration of Cone-Beam CT in Stereotactic Body Radiation Therapy,” Technology in Cancer Research & Treatment, Vol. 7, No. 2, 2008, pp. 133-139.
[12] C. Chuang, A. Sahgal, L. Lee, D. Larson, K. Huang, P. Petti, L. Verhey and L. Ma, “Effects of Residual Target Motion for Image-Tracked Spine Radiosurgery,” Medical Physics, Vol. 34, No. 11, 2007, pp. 4484-4490.
http://dx.doi.org/10.1118/1.2790587
[13] H. Wang, A. Shiu, C. Wang, J. O’Daniel, A. Mahajan, S. Woo, P. Liengsawangwong, R. Mohan and E. L. Chang, “Dosimetric Effect of Translational and Rotational Errors for Patients Undergoing Image-Guided Stereotactic Body Radiotherapy for Spinal Metastases,” International Journal of Radiation Oncology, Biology, Physics, Vol. 71, No. 4, 2008, pp. 1261-1271.
http://dx.doi.org/10.1016/j.ijrobp.2008.02.074
[14] C. Beltran, A. S. Pai Panandiker, M. J. Krasin and T. E. Merchant, “Daily Image-Guided Localization for Neuroblastoma,” Journal of Applied Clinical Medical Physics/ American College of Medical Physics, Vol. 11, No. 4, 2010, p. 3388.
[15] D. Hyde, F. Lochray, R. Korol, M. Davidson, C. S. Wong, L. Ma and A. Sahgal, “Spine Stereotactic Body Radiotherapy Utilizing Cone-Beam CT Image-Guidance with a Robotic Couch: Intrafraction Motion Analysis Accounting for All Six Degrees of Freedom,” International Journal of Radiation Oncology, Biology, Physics, Vol. 82, No. 3, 2012, pp. e555-e562.
http://dx.doi.org/10.1016/j.ijrobp.2011.06.1980
[16] J. Y. Jin, S. Ryu, J. Rock, K. Faber, Q. Chen, M. Ajlouni and B. Movsas, “Evaluation of Residual Patient Position Variation for Spinal Radiosurgery Using the Novalis Image Guided System,” Medical Physics, Vol. 35, No. 3, 2008, pp. 1087-1093.
http://dx.doi.org/10.1118/1.2839097
[17] P. C. Gerszten, E. A. Monaco 3rd, M. Quader, J. Novotny Jr., J. O. Kim, J. C. Flickinger and M. S. Huq, “Setup Accuracy of Spine Radiosurgery Using Cone Beam Computed Tomography Image Guidance in Patients with Spinal Implants,” Journal of Neurosurgery: Spine, Vol. 12, No. 4, 2010, pp. 413-420.
http://dx.doi.org/10.3171/2009.10.SPINE09249
[18] H. Li, X. R. Zhu, L. Zhang, L. Dong, S. Tung, A. Ahamad, K. S. Chao, W. H. Morrison, D. I. Rosenthal, D. L. Schwartz, et al., “Comparison of 2D Radiographic Images and 3D Cone Beam Computed Tomography for Positioning Head-and-Neck Radiotherapy Patients,” International Journal of Radiation Oncology, Biology, Physics, Vol. 71, No. 3, 2008, pp. 916-925.
http://dx.doi.org/10.1016/j.ijrobp.2008.01.008
[19] G. R. Borst, J. J. Sonke, A. Betgen, P. Remeijer, M. van Herk and J. V. Lebesque, “Kilo-Voltage Cone-Beam Computed Tomography Setup Measurements for Lung Cancer Patients; First Clinical Results and Comparison with Electronic Portal-Imaging Device,” International Journal of Radiation Oncology, Biology, Physics, Vol. 68, No. 2, 2007, pp. 555-561.
http://dx.doi.org/10.1016/j.ijrobp.2007.01.014
[20] L. Wang, R. Jacob, L. Chen, C. Ma, B. Movsas, S. Feigenberg and A. Konski, “Stereotactic IMRT for Prostate Cancer: Setup Accuracy of a New Stereotactic Body Localization System,” Journal of Applied Clinical Medical Physics/American College of Medical Physics, Vol. 5, No. 2, 2004, pp. 18-28.
[21] L. Wang, S. Feigenberg, J. Fan, L. Jin, A. Turaka, L. Chen and C. M. Ma, “Target Repositional Accuracy and PTV Margin Verification Using Three-Dimensional Cone-Beam Computed Tomography (CBCT) in Stereotactic Body Radiotherapy (SBRT) of Lung Cancers,” Journal of applied Clinical Medical Physics/American College of Medical Physics, Vol. 13, No. 2, 2012, p. 3708.
[22] J. Ma, Z. Chang, Z. Wang, Q. Jackie Wu, J. P. Kirkpatrick and F. F. Yin, “ExacTrac X-Ray 6 Degree-of-Freedom Image-Guidance for Intracranial Non-Invasive Stereotactic Radiotherapy: Comparison with Kilo-Voltage Cone-Beam CT,” Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, Vol. 93, No. 3, 2009, pp. 602-608.
[23] Z. Chang, Z. Wang, J. Ma, J. C. O’Daniel, J. Kirkpatrick and F. F. Yin, “6D Image Guidance for Spinal Non-Invasive Stereotactic Body Radiation Therapy: Comparison between ExacTrac X-Ray 6D with Kilo-Voltage Cone-Beam CT,” Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, Vol. 95, No. 1, 2010, pp. 116-121.
[24] V. Feygelman, L. Walker, P. Chinnaiyan and K. Forster, “Simulation of Intrafraction Motion and Overall Geometrical Accuracy of a Frameless Intracranial Radiosurgery Process,” Journal of Applied Clinical Medical Physics/ American College of Medical Physics, Vol. 9, No. 4, 2008, p. 2828.
[25] J. G. Mechalakos, M. A. Hunt, N. Y. Lee, L. X. Hong, C. C. Ling and H. I. Amols, “Using an Onboard Kilovoltage Imager to Measure Setup Deviation in Intensity-Modulated Radiation Therapy for Head-and-Neck Patients,” Journal of Applied Clinical Medical Physics/American College of Medical Physics, Vol. 8, No. 4, 2007, p. 2439.
[26] A. Dhabaan, E. Schreibmann, A. Siddiqi, E. Elder, T. Fox, T. Ogunleye, N. Esiashvili, W. Curran, I. Crocker and H. K. Shu, “Six Degrees of Freedom CBCT-Based Positioning for Intracranial Targets Treated with Frameless Stereotactic Radiosurgery,” Journal of Applied Clinical Medical Physics/American College of Medical Physics, Vol. 13, No. 6, 2012, p. 3916.
[27] S. S. Agabegi, F. A. Asghar and H. N. Herkowitz, “Spinal Orthoses,” The Journal of the American Academy of Orthopaedic Surgeons, Vol. 18, No. 11, 2010, pp. 657-667.
[28] A. Bogucki, “Spinal Orthoses,” Ortopedia, Traumatologia, Rehabilitacja, Vol. 4, No. 2, 2002, pp. 237-243.
[29] D. L. Skaggs, L. D. Lerman, J. Albrektson, M. Lerman, D. G. Stewart and V. T. Tolo, “Use of a Noninvasive Halo in Children,” Spine, Vol. 33, No. 15, 2008, pp. 1650-1654.
http://dx.doi.org/10.1097/BRS.0b013e31817d8241
[30] E. C. Benzel, T. A. Hadden and C. M. Saulsbery, “A Comparison of the Minerva and Halo Jackets for Stabilization of the Cervical Spine,” Journal of Neurosurgery, Vol. 70, No. 3, 1989, pp. 411-414.
http://dx.doi.org/10.3171/jns.1989.70.3.0411
[31] K. P. Sharpe, S. Rao and A. Ziogas, “Evaluation of the Effectiveness of the Minerva Cervicothoracic Orthosis,” Spine, Vol. 20, No. 13, 1995, pp. 1475-1479.
http://dx.doi.org/10.1097/00007632-199507000-00006

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.