High Density Fluorine Negative-Ion Source Generated by Utilizing Magnetized SF6

Abstract Full-Text HTML XML Download Download as PDF (Size:520KB) PP. 89-91
DOI: 10.4236/jmp.2014.52014    2,889 Downloads   4,076 Views  

ABSTRACT

In a magnetized plasma column generated from an electronegative gas, negative-ions accumulate around the plasma column via radial diffusion. In this study, a dc discharge is applied in SF6 gas to produce a plasma column, and the radial density profile of negative-ions is measured by Langmuir probes using the modified Bohm criterion. The gas pressure and discharge current dependences of negative-ion density are also measured. It is found that the negative-ion density of 8.0 × 1017 m-3 is obtained around the plasma column at r = 1.0 cm when SF6 pressure is 0.13 Pa and discharge current is 0.50 A. The negative-ion density has radial gradient, and the electron density is much lower in this region.

Cite this paper

M. Imtiaz and T. Mieno, "High Density Fluorine Negative-Ion Source Generated by Utilizing Magnetized SF6," Journal of Modern Physics, Vol. 5 No. 2, 2014, pp. 89-91. doi: 10.4236/jmp.2014.52014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Mieno and A. Ogawa, Japanese Journal of Applied Physics, Vol. 38, 1999, pp. 4586-4589.
http://dx.doi.org/10.1143/JJAP.38.4586
[2] M. A. Imtiaz and T. Mieno, Japanese Journal of Applied Physics, Vol. 47, 2008, pp. 5639-5643.
http://dx.doi.org/10.1143/JJAP.47.5639
[3] R. Kawai and T. Mieno, Japanese Journal of Applied Physics, Vol. 36, 1997, pp. L1123-L1125.
[4] M. A. Imtiaz, S. Tsuruta and T. Mieno, Plasma Sources Science and Technology, Vol. 16, 2007, pp. 324-329.
http://dx.doi.org/10.1088/0963-0252/16/2/015
[5] T. Shibayama, H. Shindo and Y. Horiike, Plasma Sources Science and Technology, Vol. 5, 1996, pp. 254-259.
http://dx.doi.org/10.1088/0963-0252/5/2/019
[6] K. P. Cheung and C. P. Chang, Journal of Applied Physics, Vol. 75, 1994, pp. 4415-4426.
http://dx.doi.org/10.1063/1.355985
[7] H. Ootera, T. Oomori, M. Tuda and K. Namba, Japanese Journal of Applied Physics, Vol. 33, 1994, pp. 4276-4280.
http://dx.doi.org/10.1143/JJAP.33.4276
[8] T. Nozawa, T. Kinoshita, T. Nishizuka, A. Narai, T. Inoue and A. Nakaue, Japanese Journal of Applied Physics, Vol. 34, 1995, pp. 2107-2113.
http://dx.doi.org/10.1143/JJAP.34.2107
[9] T. Kinoshita, M. Hane and J. P. McVittie, Journal of Vacuum Science and Technology, Vol. B14, 1996, pp. 560-565. http://dx.doi.org/10.1116/1.588431
[10] S. Samukawa, H. Ohtake and T. Mieno, Journal of Vacuum Science and Technology, Vol. A14, 1996, pp. 3049-3058. http://dx.doi.org/10.1116/1.580170
[11] N. Sato, Plasma Sources Science and Technology, Vol. 3, 1994, pp. 395-399.
http://dx.doi.org/10.1088/0963-0252/3/3/024
[12] N. Nakano, Z. L. Petrovic and T. Makabe, Japan Journal of Applied Physics, Vol. 33, 1994, pp. 2223-2230.
http://dx.doi.org/10.1143/JJAP.33.2223
[13] T. Mieno, Japanese Journal of Applied Physics, Vol. 33, 1994, pp. 4325-4328.
http://dx.doi.org/10.1143/JJAP.33.4325
[14] M. A. Lieberman and A. J. Lichtenberg, “Principle of Plasma Discharges and Material Processing,” John Willy and Sons, New York, 1994.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.