Electronic Properties of Nanopore Edges of Ferromagnetic Graphene Nanomeshes at High Carrier Densities under Ionic-Liquid Gating

DOI: 10.4236/msa.2014.51001   PDF   HTML   XML   3,486 Downloads   3,486 Views   Citations

Abstract

Graphene edges with a zigzag-type atomic structure can theoretically produce spontaneous spin polarization despite being a critical-metal-free material. We have demonstrated this in graphene nanomeshes (GNMs) with honeycomb-like arrays of low-defect hexagonal nanopores by observing room-temperature ferromagnetism and spin-based phenomena arising from the zigzag-pore edges. Here, we apply extremely high electric fields to the ferromagnetic (FM) GNMs using an ionic-liquid gate. A large on/off-ratio for hole current is observed for even small applied ionic-liquid gate voltages (Vig). Observations of the magnetoresistance behavior reveal high carrier densities of ~1013 cm-2 at large Vig values. We find a maximum conductance peak in the high -Vig region and its separation into two peaks upon applying a side-gate (in-plane external) voltage (Vex). It is discussed that localized edge-π band with excess-density electrons induced by Vig and its spin splitting for majority and minority of spins by Vex (half-metallicity model) lead to these phenomena. The results must realize critical-element-free novel spintronic devices.

Share and Cite:

T. Hashimoto, S. Kamikawa, Y. Yagi and J. Haruyama, "Electronic Properties of Nanopore Edges of Ferromagnetic Graphene Nanomeshes at High Carrier Densities under Ionic-Liquid Gating," Materials Sciences and Applications, Vol. 5 No. 1, 2014, pp. 1-9. doi: 10.4236/msa.2014.51001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Nakada, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, “Edge State in Graphene Ribbons: Nanometer Size Effect and Edge Shape Depend,” Physical Review B, Vol. 54, No. 24, 1996, pp. 17954-17961.
http://dx.doi.org/10.1103/PhysRevB.54.17954
[2] M. Fujita, K. Wakabayashi, K. Nakada and K. Kusakabe, “Peculiar Localized State at Zigzag Graphite Edge,” Journal of the Physical Society of Japan, Vol. 65, 1996, pp. 1920-1923. http://dx.doi.org/10.1143/JPSJ.65.1920
[3] H. Lee, Y. Son, N. Park, S. Han and J. Yu, “Magnetic Ordering at the Edges of Graphitic Fragments: Magnetic Tail Interactions between the Edge-Localized States,” Physical Review B, Vol. 72, No. 17, 2005, Article ID: 174431. http://dx.doi.org/10.1103/PhysRevB.72.174431
[4] R. G. A. Veiga, R. H. Miwa and G. P. Srivastava, “Quenching of Local Magnetic Moment in Oxygen Adsorbed Graphene Nanoribbons,” The Journal of Chemical Physics, Vol. 128, 2008, Article ID: 201101.
http://dx.doi.org/10.1063/1.2937453
[5] T. Enoki and K Takai, “The Edge State of Nanographene and the Magnetism of the Edge-State Spins,” Solid State Communications, Vol. 149, No. 27-28, 2009, pp. 1144-1150. http://dx.doi.org/10.1016/j.ssc.2009.02.054
[6] Y. W. Son, M. L. Cohen and S. G. Louie, “Half-Metallic Graphene Nanoribbons,” Nature, Vol. 444, 2006, pp. 347-349. http://dx.doi.org/10.1038/nature05180
[7] L. Yang, C. Park, Y. Son, M. L. Cohen and S. G. Louie, “Quasiparticle Energies and Band Gaps in Graphene Nanoribbons,” Physical Review Letters, Vol. 99, No. 18, 2007, Article ID: 186801.
http://dx.doi.org/10.1103/PhysRevLett.99.186801
[8] T. Shimizu, J. Haruyama, D. C. Marcano, D. V. Kosinkin, J. M. Tour, K. Hirose and K. Suenaga, “Large Intrinsic Energy Bandgaps in Annealed Nanotube-Derived Graphene Nanoribbons,” Nature Nanotechnology, Vol. 6, 2011, pp. 45-50.
http://dx.doi.org/10.1038/nnano.2010.249
[9] X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo and H. Dai, “Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors,” Physical Review Letters, Vol. 100, No. 20, 2008, Article ID: 206803. http://dx.doi.org/10.1103/PhysRevLett.100.206803
[10] K. Tada, T. Hashimoto, J. Haruyama, H. Yang and M. Chshiev, “Spontaneous Spin Polarization and Spin Pumping Effect on Edges of Graphene Antidot Lattices,” Solid State Physics, Vol. 249, No. 12, 2012, pp. 2491-2496. http://dx.doi.org/10.1002/pssb.201200042
[11] I. Takesue, J. Haruyama, N. Kobayashi, S. Chiashi, S. Maruyama, T. Sugai and H. Shinohara, “Superconductivity in Entirely End-Bonded Multiwalled Carbon Nanotubes,” Physical Review Letters, Vol. 96, No. 5, 2006, Article ID: 057001.
http://dx.doi.org/10.1103/PhysRevLett.96.057001
[12] X. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-Delgado, J. M. Romo-Herrera, H. Son, Y. Hsieh, A. Reina, J. Kong and M. S. Dresselhaus, “Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons,” Science, Vol. 323, No. 5922, 2009, pp. 1701-1705. http://dx.doi.org/10.1126/science.1166862
[13] C. O. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C. Park, M. F. Crommie, M. L. Cohen and S. G. Louie, “Graphene at the Edge: Stability and Dynamics,” Science, Vol. 323, No. 5922, 2009, pp. 1705-1708. http://dx.doi.org/10.1126/science.1166999
[14] Y. M. You, Z. H. Ni, T. Yu and Z. X. Shen, “Edge Chirality Determination of Graphene by Raman Spectroscopy,” Applied Physics Letters, Vol. 93, No. 16, 2008, Article ID: 163112. http://dx.doi.org/10.1063/1.3005599
[15] B. Krauss, P. Nemes-Incze, V. Skakalova, L. P. Biro, K. von Klitzing and J. H. Smet, “Raman Scattering at Pure Graphene Zigzag Edges,” Nano Letters, Vol. 10, No. 11, 2010, pp. 4544-4548. http://dx.doi.org/10.1021/nl102526s
[16] D. K. Efetov and P. Kim, “Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities,” Physical Review Letters, Vol. 105, No. 25, 2010, Article ID: 256805.
http://dx.doi.org/10.1103/PhysRevLett.105.256805
[17] D. K. Efetov, P. Maher, S. Glinskis and P. Kim, “Multiband Transport in Bilayer Graphene at High Carrier Densities,” Physical Review B, Vol. 84, No. 16, 2011, Article ID: 161412(R).
[18] A. Das, A. K. Geim, et al., “Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor,” Nature Nanotechnology, Vol. 3, 2008, p. 210. http://dx.doi.org/10.1038/nnano.2008.67
[19] M. Panzer, et al., “Photo-Embossed Surface Relief Structures with an Increased Aspect Ratios by Addition of a Reversible Addition—Fragmentation Chain Transfer Agent,” Advanced Materials, Vol. 20, No. 16, 2008, p. 3117. http://dx.doi.org/10.1002/adma.200800124
[20] K. F. Mac, et al., “Observation of an Electric-Field-Induced Band Gap in Bilayer Graphene by Infrared Spectroscopy,” Physical Review Letters, Vol. 102, No. 25, 2009, Article ID: 256405.
http://dx.doi.org/10.1103/PhysRevLett.102.256405
[21] A. H. R. Pasler, “Interlayer Interactions in Graphite and Carbon Nanotubes,” Chemical Physics, Vol. 1, No. 18, 1999, p. 4459.
[22] M. Otani, M. Koshino, Y. Takagi and S. Okada, “Intrinsic Magnetic Moment on (0001) Surfaces of Rhombohedral Graphitee,” Physical Review B, Vol. 81, No. 16, 2010, Article ID: 161403 (R).
http://dx.doi.org/10.1103/PhysRevB.81.161403
[23] M. Otani, Y. Takagi, M. Koshino and S. Okada, “Phase Control of Magnetic State of Graphite Thin Films by Electric Field,” Appl. Phys. Lett., Vol. 96, No. 24, 2010, pp. 242504.http://dx.doi.org/10.1063/1.3455069
[24] S. Murakami, N. Nagaosa and S. Zhang, “Dissipationless Quantum Spin Current at Room Temperature,” Science, Vol. 301, No. 5638, 2003, pp. 1348-1351.
http://dx.doi.org/10.1126/science.1087128
[25] C. L. Kane and E. J. Mele, “Quantum Spin Hall Effect in Graphene,” Physical Review Letters, Vol. 95, No. 22, 2005, pp. 226801-226804.
http://dx.doi.org/10.1103/PhysRevLett.95.226801
[26] M. J. Schmidt and D. Loss, “Edge States and Enhanced Spin-Orbit Interaction at Graphene/Graphane Interfaces,” Physical Review B, Vol. 81, No. 16, 2010, Article ID: 165439. http://dx.doi.org/10.1103/PhysRevB.81.165439
[27] D. A. Abanin, S. V. Morozov, L. A. Ponomarenko, R. V. Gorbachev, A. S. Mayorov, M. I. Katsnelson, K. Watanabe, T. Taniguchi, K. S. Novoselov and L. S. Levitov, “Giant Nonlocality near the Dirac Point in Graphene,” Science, Vol. 332, No. 6027, 2011, pp. 328-330.
http://dx.doi.org/10.1126/science.1199595
[28] T. Shimizu, J. Nakamura, K. Tada, Y. Yagi and J. Haruyama, “Magnetoresistance Oscillations Arising from Edge-Localized Electrons in Low-Defect Graphene Antidot-Lattices,” Applied Physics Letters, Vol. 100, No. 2, 2012, Article ID: 023104.
http://dx.doi.org/10.1063/1.3675547
[29] J. Bai, X. Zhong, S. Jiang, Y. Huang and X. Duan, “Graphene Nanomesh,” Nature Nanotechnology, Vol. 5, 2010, pp. 190-194. http://dx.doi.org/10.1038/nnano.2010.8
[30] H. Grabert and M. H. Devoret, “Single Charge Tunneling,” NATO ASI Series B, Vol. 294, Plenum, New York, 1991.
[31] J. Haruyama I. Takesue, T. Hasegawa and Y. Sato, “Coulomb Blockade Related to a Localization Effect in a Single Tunnel-Junction/Carbon-Nanotube System,” Physical Review B, Vol. 63, No. 7, 2001, Article ID: 073406.
http://dx.doi.org/10.1103/PhysRevB.63.073406

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.