Oxidative Stress Responsive SERK1 Gene Directs the Progression of Somatic Embryogenesis in Cotton (Gossypium hirsutum L. cv. Coker 310)


Somatic embryogenesis (SE) is a prominent mode of regeneration in plants. The acquisition of SE is predominantly invoked by the oxidative stress which plays an important role in signal transduction and cellular redox. Since balanced generation of oxidants is important to cellular differentiation, modulation in cell redox could be responsive to genotypic refinement for SE. To study the dynamics of cellular redox during SE, we conducted comparative expression analyses of cotton (Gossypium hirsutum), using two independently purified near-isogenic lines for the trait of SE. We interrogated expression changes in cell-signaling factor Somatic Embryogenesis Receptor Kinase (SERK) and activity of antioxidant Glutathione in different developmental stages including cotyledonary leaf, calli from different stages of regeneration of fully-regenerating (FR) and non-regenerating (NR) lines of Coker310 cultivar. At evolutionary scale, the cotton SERKs showed high sequence similarity in receptor kinase domain with diverse systems. Exclusively, SERK1 responsible for potential signaling processes during SE revealed significant expression up-regulation in the embryogenic calli of FR line. Similarly, activity of antioxidant glutathione was substantially up-regulated in embryogenic calli of FR line in comparison to its counterpart form. In contrast, calli from early-stages of regeneration of both FR and NR lines had no significant influences on the regulation of SERK and glutathione levels prior to the acquisition of embryogenesis. These results highlight that in vitro purification of FR line in cotton for enhanced regeneration potential (through SE) resulted in signaling and metabolic transformations of the manner in which cellular redox levels have become modulated.

Share and Cite:

D. Pandey and B. Chaudhary, "Oxidative Stress Responsive SERK1 Gene Directs the Progression of Somatic Embryogenesis in Cotton (Gossypium hirsutum L. cv. Coker 310)," American Journal of Plant Sciences, Vol. 5 No. 1, 2014, pp. 80-102. doi: 10.4236/ajps.2014.51012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. Firoozabady, M. Heckert and N. Gutterson, “Transformation and Regeneration of Pineapple,” Plant Cell, Tissue and Organ Culture, Vol. 84, No. 1, 2006, pp. 1-16.
[2] K. K. Kumar, S. Maruthasalam, M. Loganathan, D. Sudhakar and P. Balasubramanian, “An Improved Agrobacterium-Mediated Transformation Protocol for Recalcitrant Elite Indica Rice Cultivars,” Plant Moleculoar Biology Reporter, Vol. 23, No. 1, 2005, pp. 67-73.
[3] V. Dodeman, G. Ducreux and M. Kreis, “Zygotic Embryogenesis versus Somatic Embryogenesis,” Journal of Experimental Botany, Vol. 48, 1997, pp. 1493-1509.
[4] F. R. Quiroz-Figueroa, R. Rojas-Herrera, R. M. Galaz-Avolos and V. M. Loyola-Vargas, “Embryo Production through Somatic Embryogenesis can be Used to Study Cell Differentiation in Plants,” Plant Cell, Tissue and Organ Culture, Vol. 86, No. 3, 2006, pp. 285-301.
[5] P. Navasivayam, “Acquisition of Embryogenic Competence during Somatic Embryogenesis,” Plant Cell, Tissue and Organ Culture, Vol. 90, No. 1, 2007, pp. 1-8.
[6] D. K. Pandey, A. Singh and B. Chaudhary, “Boron-Mediated Plant Somatic Embryogenesis: A Provocative Model,” Journal of Botany, Vol. 2012, No. 2012, Article ID: 375829. http://dx.doi.org/10.1155/2012/375829
[7] O. Faure, W. Dewitte, A. Nougarède and H. Van Onckelen, “Precociously Germinating Somatic Embryos of Vitis vinifera Have Lower ABA and IAA Levels than Their Germinating Zygotic Counterparts,” Physiologia Plantarum, Vol. 102, No. 4, 1998, pp. 591-595.
[8] M. D. Gaj, “Factors Influencing Somatic Embryogenesis Induction and Plant Regeneration with Particular Reference to Arabidopsis thaliana (L.) Heynh,” Plant Growth Regulation, Vol. 43, No. 1, 2004, pp. 27-47.
[9] V. M. Jiménez, “Involvement of Plant Hormones and Plant Growth Regulators on in Vitro Somatic Embryogenesis,” Plant Growth Regulation, Vol. 47, No. 2-3, 2005, pp. 91-110.
[10] V. M. Jiménez and F. Bangerth, “Endogenous Hormone Levels in Explants and in Embryogenic and Non-Embryogenic Cultures of Carrot,” Physiologia Plantarum, Vol. 111, No. 3, 2001, pp. 389-395.
[11] D. Weijers and G. Jürgens, “Auxin and Embryo Axis Formation: The Ends in Sight?” Current Opinion in Plant Biology, Vol. 8, No. 1, 2005, pp. 32-37.
[12] J. Friml, A. Vieten, M. Sauer, D. Weijers, H. Schwartz, T. Hamman, R. Offringa and G. Jürgens, “Efflux-Dependent Auxin Gradients Establish the Apical-Basal Axis of Arabidopsis,” Nature, Vol. 426, No. 6963, 2003, pp. 147-153.
[13] S. Sabatini, D. Beis, H. Wolkenfelt, J. Murfett, T. Guifoyle, J. Malamy, P. Benfey, O. Leyser, N. Bechtold, P. Weisbeek and B. Scheres, “An Auxin-Dependent Distal Organizer of Pattern and Polarity in the Arabidopsis Root,” Cell, Vol. 99, No. 5, 1999, pp. 463-472.
[14] G. Sasaki, K. Katoh, N. Hirose, H. Suga, K. Kumar, T. Miyata and Z. H. Su, “Multiple Receptor-Like Kinase cDNA from Liverwort Marchantia polymorpha and Two Charophycean Green Alga, Closterium ehrenbergii and Nitella axillaris: Extensive Gene Duplications and Gene Shufflings in the Early Evolution of Streptophytes,” Gene, Vol. 401, No. 1-2, 2007, pp. 135-144.
[15] K. Rajasekaran, M. B. Hein and I. K. Vasil, “Endogenous Abscisic Acid and indole-3-Acetic Acid and Somatic Embryogenesis in Cultured Leaf Explants of Pennisetum purpureum Schum: Effects in Vivo and in Vitro of Glyphosate, Fluridone, and Paclobutrazol,” Plant Physiology, Vol. 84, No. 1, 1987, pp. 47-51.
[16] E. Guiderdoni, B. Mérot, T. Eksomtramage, F. Paulet, P. Feldmann and J. C. Glaszmann, “Somatic Embryogenesis in Sugarcane (Saccharum Species),” In: Y. P. S. Bajaj, Ed., Somatic Embryogenesis and Synthetic Seed II, Vol. 31, Springer, Berlin, 1995, pp. 92-113.
[17] V. M. Jimenez and F. Bangerth, “Hormonal Status of Maize Initial Explants and of the Embryogenic and Non-Embryogenic Callus Cultures Derived from Them as Related to Morphogenesis in Vitro,” Plant Science, Vol. 160, No. 2, 2001, pp. 247-257.
[18] C. Albrecht, E. Russinova, B. Kemmerling, M. Kwaaitaal and S. de Vries, “Arabidopsis Somatic Embryogenesis Receptor Kinase Protein Serves Brassinosteroid-Dependent and Independent Signalling Pathway,” Plant Physiology, Vol. 148, No. 1, 2008, pp. 611-619.
[19] S. Braybrook, S. Stone, S. Park, A. Bui, B. Le, R. Fischer, R. Goldberg and J. Harada, “Genes Directly Regulated by LEAFY COTYLEDON2 Provide Insight into the Control of Embryo Maturation and Somatic Embryogenesis,” Proceedings of the Natinal Academy of Sciences of the United States of America, Vol. 103, No. 9, 2006, pp. 3468-3473. http://dx.doi.org/10.1073/pnas.0511331103
[20] S. Casson, M. Spencer, K. Walker and K. Lindsey, “Laser Capture Microdissection for the Analysis of Gene Expression during Embryogenesis of Arabidopsis,” Plant Journal, Vol. 42, No. 1, 2005, pp. 111-123.
[21] A. Chugh and P. Khurana, “Gene Expression during Somatic Embryogenesis-Recent Advances,” Current Science, Vol. 83, No. 6, 2002, pp. 715-730.
[22] I. Heidmann, J. Lambalk, R. Joosen, G. Angenent, J. Custers and K. Boutilier, “Expression of BABY BOOM Induces Somatic Embryogenesis in Tobacco,” International Conference Haploids in Higher Plants III, Vienna, Vol. 52, 2006, pp. 12-15.
[23] M. Ikeda, M. Umehara and H. Kamada, “Embryogenesis-Related Genes; Its Expression and Roles during Somatic and Zygotic Embryogenesis in Carrot and Arabidopsis,” Plant Biotechnology, Vol. 23, No. 2, 2006, pp. 153-161.
[24] P. Maillot, S. Lebel, P. Schellenbaum, A. Jacques and B. Walter, “Differential Regulation of SERK, LEC1-Like and Pathogenesis-Related Genes during Indirect Secondary Somatic Embryogenesis in Grapevine,” Plant Physiology and Biochemistry, Vol. 47, No. 8, 2009, pp. 743-752. http://dx.doi.org/10.1016/j.plaphy.2009.03.016
[25] K. E. Nolan, S. Kurdyukov and R. J. Rose, “Expression of the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) Gene Is Associated with Developmental Change in the Life Cycle of the Model Legume Medicago truncatula,” Journal of Experimental Botany, Vol. 60, No. 6, 2009, pp. 1759-1771.
[26] P. Passarinho, T. Ketelaar, M. Xing, J. Van Arkel, C. Maliepaard, M. Hendriks, R. Joosen, M. Lammers, L. Herdies, B. Boer, L. Van Der Geest and K. Boutilier, “BABY BOOM Target Genes Provide Diverse Entry Points into Cell Proliferation and Cell Growth Pathways,” Plant Molecular Biology, Vol. 68, No. 3, 2008, pp. 225-237. http://dx.doi.org/10.1007/s11103-008-9364-y
[27] E. Schmidt, F. Guzzo, M. Toonen and S. De Vries, “A Leucine-Rich Repeat Containing Receptor-Like Kinase Marks Somatic Plant Cells Competent to Form Embryos,” Development, Vol. 124, No. 10, 1997, pp. 2049-2062.
[28] Y. Zhenga, N. Renb, H. Wanga, A. J. Strombergb and S. E. Perrya, “Global Identification of Targets of the Arabidopsis MADS Domain Protein AGAMOUS-Like15,” The Plant Cell, Vol. 21, No. 9, 2009, pp. 2563-2577.
[29] P. Maillot, B. Walter and P. Schellenbaum, “Somatic Embryogeneisis Recepter like Kinases Are Related to Embryogenesis and Other Developmental and Defence Pathways,” In: A. Kumar and S. K. Sopory, Eds., Recent Advances in Plant Biotechnology and Its Applications, I.K. Publication House, 2008, pp. 154-172.
[30] S. D. Guo, Y.-L. Shi and R. Zhang, “Cloning and Characterization of a Cotton SERK Gene Related to the Development of the Anther in Gossypium hirsutum,” The Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, 12 Zhongguancun Nandajie, Beijing (Web Report), 2010.
[31] Y. Zhang, Z. Liu and J. Hua, “Cloning and Characterization of a Cotton SERK-Like Gene,” Department of Plant Genetics & Breeding, China Agricultural University: Department of Plant Genetics & Breeding, China Agricultural University, Beijing, 2011.
[32] S. D. Guo, Y. L. Shi and R. Zhang, “Cloning and Characterization of a Cotton SERK Gene,” Chinese Academy of Agricultural Sciences, Biotechnology Research Institute: The Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing, 2011.
[33] V. Hecht, J. Vielle-Calzada, M. Hartog, E. Schmidt, K. Boutilier, U. Grossniklaus and S. De Vries, “The Arabidopsis Somatic Embryogenesis Receptor Kinase1 Gene Is Expressed in Developing Ovules and Embryos and Enhanses Embryogenic Competence in Culture,” Plant Physiology, Vol. 127, No. 3, 2001, pp. 803-816.
[34] M. Perez-Nunez, R. Souza, L. Seaenz, J. Chan, J. Zuniga-Aguilar and C. Oropeza, “Detection of a SERK-Like Gene in Coconut and Analysis of Its Expression during the Formation of Embryogenic Callus and Somatic Embryos,” Plant Cell Reports, Vol. 28, No. 1, 2009, pp. 11-19. http://dx.doi.org/10.1007/s00299-008-0616-8
[35] T. Shimada, T. Hirabayashi, H. Fujii, M. Kita and M. Omura, “Isolation and Characterization of the Somatic Embryogenesis Receptor-Like Kinase Gene Homologue (CitSERK) from Cirus unshiu Marc.,” Scientia Horticulturae, Vol. 103, No. 2, 2005, pp. 233-238.
[36] M. Somleva, E. Schmidt and S. De Vries, “Embryogenic Cells in Dactylis glomerata L. (Poaceae) Explants Identified by Cell Tracking and by SERK Expression,” Plant Cell Reports, Vol. 19, No. 7, 2000, pp. 718-726.
[37] C. Thomas, D. Meyer, C. Himber and A. Steinmetz, “Spatial Expression of a Sunflower SERK Gene during Induction of Somatic Embryogenesis and Shoot Organogenesis,” Plant Physiology and Biochemistry, Vol. 42, No. 1, 2004, pp. 35-42.
[38] K. Nolan, R. R. Irwanto and R. J. Rose, “Auxin Up-Regulates MtSERK1 Expression in Both Medicago truncatula Root-Forming and Embryogenic Cultures,” Plant Physiology, Vol. 133, No. 1, 2003, pp. 218-230.
[39] H. Hu, L. Xiong and Y. Yang, “Rice SERK1 Gene Positively Regulates Somatic Embryogenesis of Cultured Cell and Host Defense Response against Fungal Infection,” Planta, Vol. 222, No. 1, 2005, pp. 107-117.
[40] S. K. Sharma, S. Millam, I. Hein and G. J. Bryan, “Cloning and Molecular Characterisation of a Potato SERK Gene Transcriptionally Induced during Initiation of Somatic Embryogenesis,” Planta, Vol. 228, No. 2, 2008, pp. 319-330. http://dx.doi.org/10.1007/s00425-008-0739-8
[41] M. Santos, E. Romano, K. Yotoko, M. Tinoco, B. Dias and F. Argao, “Characterisation of the Cacao Somatic Embryogenesis Receptor-Like Kinase Gene Expressed during Somatic Embryogenesis,” Plant Science, Vol. 168, No. 3, 2005, pp. 723-729.
[42] B. Singla, J. P. Khurana and P. Khurana, “Characterization of Three Somatic Embryogenesis Receptor Kinase Genes from Wheat, Triticum aestivum,” Plant Cell Reports, Vol. 27, No. 5, 2008, pp. 833-843.
[43] M. Belmonte, C. Stasolla, N. Loukanina, E. Yeung and T. Thorpe, “Glutathione Modulation of Purine Metabolism in Cultured White Spruce Embryogenic Tissue,” Plant Science, Vol. 165, No. 6, 2003, pp. 1377-1385.
[44] M. J. Elmore, A. J. Lamb, G. Y. Ritchie, R. M. Douglas, A. Munro, A. Gajewska and I. R. Booth, “Activation Potassium Efflux from Escherichia coli by Glutathione Metabolites,” Molecular Microbiology, Vol. 4, No. 3, 1990, pp. 405-412.
[45] T. Isah and A. Mujib, “Studies on Antioxidant Enzymes Activity during in Vitro Morphogenesis of Caladium bicolor Linn,” International Journal of Modern Cellular and Molecular Biology, Vol. 1, No. 1, 2012, pp. 1-9.
[46] M. Agrawal and S. Purohit, “Changes in Antioxidant Enzymes Activity during in Vitro Morphogenesis of Carnation and the Effect of Antioxidants on Plant Regeneration,” World Journal of Science and Technology, Vol. 2, No. 7, 2012, pp. 87-92.
[47] M. Belmonte, C. Stasolla, R. Katahira, N. Loukanina, E. C. Yeung and T. A. Thorpe, “Glutathione Induced Growth of Embryogenic Tissue of White Spruce Correlates with Changes in Pyrimidine Nucleotide Metabolism,” Plant Science, Vol. 168, No. 3, 2005, pp. 803-812.
[48] A. M. Shohael, M. Ali, E. J. Hahn and K. Y. Paek, “Glutathione Metabolism and Antioxidant Responses during Eleutherococcus senticosus Somatic Embryo Development in a Bioreactor,” Plant Cell, Tissue and Organ Culture, Vol. 89, No. 2-3, 2007, pp. 121-129.
[49] M. Wiweger, I. Farbos, M. Ingouff, U. Lagercrantz and V. S. Arnold, “Expression of Chia4-Pa Chitinase Genes during Somatic and Zygotic Embryo Development in Norway Spruce (Picea abies): Similarities and Differences between Gymnosperm and Angiosperm Class IV Chitinases,” Journal of Experimental Botany, Vol. 54, No. 393, 2003, pp. 2691-2699.
[50] R. Rose and K. Nolan, “Genetic Regulation of Somatic Embryogenesis with Particular Reference to Arabidopsis Thaliana and Medicago truncatula,” In Vitro Cellular and Developmental Biology Plants, Vol. 42, No. 6, 2006, pp. 473-481.
[51] Z. Chen, S. Li and N. Trolinder, “Some Characteristics of Somatic Embryogenesis and Plant Regeneration in Cotton Cell Suspension Culture,” Scientia Agricultura Sinica, Vol. 20, No. 5, 1987, pp. 6-11.
[52] N. Gawel, A. Rao and C. Robacker, “Somatic Embryogenesis from Leaf and Petiole Callus Cultures of Gossypium hirsutum L.,” Plant Cell Reports, Vol. 5, No. 6, 1986, pp. 457-459.
[53] T. Kolganova, D. Srivastava and V. Mett, “Callusogenesis and Regeneration of Cotton (Gossypium hirsutum L.) cv. 108-F,” Soviet Plant Physiology, Vol. 39, 1992, pp. 232-236.
[54] R. Shoemaker, I. Couche and D. Galbraith, “Characterization of Somatic Embryogenesis and Plant Regeneration in Cotton (Gossypium hirsutum L.),” Plant Cell Reports, Vol. 5, No. 3, 1986, pp. 178-181.
[55] N. Trolinder and J. Goodin, “Somatic Embryogenesis and Plant Regeneration in Cotton (Gossypium hirsutum L.),” Plant Cell Reports, Vol. 6, No. 3, 1987, pp. 231-234.
[56] K. Voo, C. Rugh and J. Kamalay, “Indirect Somatic Embryogenesis and Plantlet Recovery from Cotton (Gossypium hirsutum L.),” In Vitro Cellular & Developmental Biology-Plant, Vol. 27, No. 3, 1991, pp. 117-124.
[57] D. Zhang and Z. Wang, “Tissue Culture and Embryogenesis of Gossypium hirsutum L.,” Acta Botanica Sinica, Vol. 31, 1989, pp. 161-163.
[58] J. M. Poehlman, “Breeding Filed Crops,” The AVI Publishing Co. Inc., Westport, 1979.
[59] B. Chaudhary, “Development of Non-Regenerating Line in Cotton through in Vitro Purification,” Gautam Buddha University, Gr. Noida UP (Unpublished Data), 2013.
[60] S. Kumar, P. Sharma and D. Pental, “A Genetic Approach to in Vitro Regeneration of Non-Regenerating Cotton (Gossypium hirsutum L.) Cultivars,” Plant Cell Reports, Vol. 18, No. 1-2, 1998, pp. 59-63.
[61] O. Karami and A. Saidi, “The Molecular Basis for Stress Induced Acquisition of Somatic Embryigenesis,” Molecular Biology Reports, Vol. 37, No. 5, 2010, pp. 2493-2507. http://dx.doi.org/10.1007/s11033-009-9764-3
[62] J. Hemphill, C. Maier and K. D. Chapman, “Rapid in Vitro Plant Regeneration of Cotton (Gossypium hirsutum L.),” Plant Cell Reports, Vol. 17, No. 4, 1998, pp. 273-278. http://dx.doi.org/10.1007/s002990050391
[63] T. Murashige and F. Skoog, “A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures,” Physiologia Plantarum, Vol. 15, No. 3, 1962, pp. 473497.
[64] B. Chaudhary, S. Kumar, K. V. S. K. Prasad, G. S. Oinam, P. K. Burma and D. Pental, “Slow Desiccation Leads to High-Frequency Shoot Recovery from Transformed Somatic Embryos of Cotton (Gossypium hirsutum L. cv. Coker 310 FR),” Plant Cell Reports, Vol. 21, No. 10, 2003, pp. 955-960.
[65] G. Davidonis and R. Hamilton, “Plant Regeneration from Callus Tissue of Gossypium hirsutum L.,” Plant Science Letters, Vol. 32, No. 1-2, 1983, pp. 89-93.
[66] J. Gould, S. Banister, O. Hasegawa, M. Fahima and R. Smith, “Regeneration of Gossypium hirsutum and G. barbadense from Shoot Apex Tissues for Transformation,” Plant Cell Reports, Vol. 10, No. 1, 1991, pp. 12-16.
[67] M. Peetrs, K. Willems and R. Swennen, “Protoplast to Plant Regeneration in Cotton Tissue Cultures,” Physiologia Plantarum, Vol. 15, 1994, pp. 473-497.
[68] H. Price and R. Smith, “Somatic Embryogenesis in Suspension Cultures of Gossypium klotzschiaanum Anderss,” Planta, Vol. 145, No. 3, 1979, pp. 305-307.
[69] B. Chaudhary, “Development of Transgenics in Cotton (Gossypium hirsutum L. cv. Coker 310FR) for Insect Resistacne and Marker Gene Removal,” Ph.D. Thesis, in Genetics. Ph.D. University of Delhi South Campus, New Delhi, 2006.
[70] T. Takeda, H. Inose and H. Matsuoka, “Stimulation of Somatic Embryogenesis in Carrot Cells by the Addition of Calcium,” Biochemical Engineering Journal, Vol. 14, No. 2, 2003, pp. 143-148.
[71] X. Huang, M. Begley, K. Morgenstern, Y. Gu, P. Rose, H. Zhao and X. Zhu, “Crystal Structure of an Inactive Akt2 Kinase Domain,” Structure, Vol. 11, No. 1, 2003, pp. 21-30. http://dx.doi.org/10.1016/S0969-2126(02)00937-1
[72] A. Dievart and S. Clark, “Using Mutant Alleles to Determine the Structure and Function of Leucine-Rich Repeat Receptor-Like Kinase,” Currunt Opinion in Plant Biology, Vol. 6, No. 5, 2003, pp. 507-516.
[73] A. Marchler-Bauer, C. Zheng, F. Chitsaz, M. K. Derbyshire, L. Y. Geer, R. C. Geer, N. R. Gonzales, M. Gwadz, D. I. Hurwitz, C. J. Lanczycki, F. Lu, S. Lu, G. H. Marchler, J. S. Song, N. Thanki, R. A. Yamashita, D. Zhang and S. H. Bryant, “CDD: Conserved Domains and Protein Three-Dimensional Structure,” Nucleic Acids Research, Vol. 41, No. D1, 2013, pp. 348-352.
[74] Y.-L. Shi, R. Zhang, X.-P. Wu, Z.-G. Meng and S.-D. Guo, “Cloning and Characterization of a Somatic Embryogenesis Receptor-Like Kinase Gene in Cotton (Gossypium hirsutum),” Journal of Integrative Agriculture, Vol. 11, No. 6, 2012, pp. 898-909.
[75] J. Vandesompele, K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe and F. Speleman, “Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes,” Genome Biology, Vol. 3, No. 7, 2002, pp. 1-12.
[76] S. Artico, S. Nardeli, O. Brilhante, M. Grossi-de-Sa and M. Alves-Ferreira, “Identification and Evaluation of New Reference Genes in Gossypium hirsutum for Accurate Normalization of Real-Time Quantitative RT-PCR Data,” BMC Plant Biology, Vol. 10, 2010, p. 49.
[77] N. A. Eckardt, “Abscisic Acid Biosynthesis Gene Underscores the Complexity of Sugar, Stress, and Hormone Interactions,” Plant Cell, Vol. 14, No. 11, 2002, pp. 2645-2649. http://dx.doi.org/10.1105/tpc.141110
[78] Y. Osakabe, K. Maruyama, M. Seki, M. Satou, K. Shinozaki and K. Yamaguchi Shinozaki, “Leucine-Rich Repeat Receptor-Like Kinase1 Is a Key Membrane-Bound Regulator of Abscisic Acid Early Signaling in Arabidopsis,” Plant Cell, Vol. 17, No. 4, 2005, pp. 1105-1119.
[79] F. Mantiri, S. Kurdyukov, S. Chen, and R. Rose, “The Transcription Factor MtSERF1 may Function as a Nexus between Stress and Development in Somatic Embryogenesis in Medicago truncatula,” Plant Signaling and Behavior, Vol. 3, No. 7, 2008, pp. 498-500.
[80] Q. Zheng, Y. Zheng and S. Perry, “AGAMOUS-Like15 Promotes Somatic Embryogenesis in Arabidopsis and Soybean in Part by the Control of Ethylene Biosynthesis and Response,” Plant Physiology, Vol. 161, No. 4, 2013, pp. 2113-2127. http://dx.doi.org/10.1104/pp.113.216275
[81] S. Baudino, R. Brettschneider, V. Hecht, T. Dresselhaus, H. Lorz, C. Dumas and P. Rogowsky, “Molecular Characterization of Novel Maize LRR Receptor-Like Kinases, Which Belong to the SERK Family,” Planta, Vol. 213, No. 1, 2001, pp. 1-10.
[82] A. R. Paolacci, O. A. Tanzarella, E. Porceddu and M. Ciaffi, “Identification and Validation of Reference Genes for Quantitative RT-PCR Normalization in Wheat,” BMC Molecular Biology, Vol. 10, 2009, p. 11.
[83] K. Apel and H. Hirt, “Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction,” Annual Review of Plant Biology, Vol. 55, 2004, pp. 373-399.
[84] C. Bowler, M. V. Montagu and D. Inze, “Superoxide Dismutase and Stress Tolerance,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 43, 1992, pp. 83-116.
[85] H. Willekens, S. Chamnongpol, M. Davey, M. Schraudner, C. Langebartels, M. V. Montagu, D. Inze and W. V. Camp, “Catalase Is a Sink for H2O2 and Is Indispensable for Stress Defence in C3 Plants,” EMBO Journal, Vol. 16, No. 16, 1997, pp. 4806-4816.
[86] G. Noctor and C. Foyer, “Ascorbate and Glutathione: Keeping Active Oxygen under Control,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 49, 1998, pp. 249-279.
[87] R. Galland, B. Randoux, J. Vasseur and J. Hilbert, “Glutathione S-Transferase cDNA Identified by mRNA Differential Display Is Upregulated during Somatic Embryogenesis in Cichorium,” Biochimica et Biophysica Acta, Vol. 1522, No. 3, 2001, pp. 212-216.
[88] F. Thibaud-Nissen, R. Shealy, A. Khanna and L. Vodkin, “Clustering of Microarray Data Reveals Transcript Patterns Associated with Somatic Embryogenesis in Soybean,” Plant Physiology, Vol. 132, No. 1, 2003, pp. 118-136. http://dx.doi.org/10.1104/pp.103.019968
[89] K. R. Cui, G. S. Xing, X. M. Liu, G. M. Xing and Y. F. Wang, “Effect of Hydrogen Peroxide on Somatic Embryogenesis of Lycium barbarum L.,” Plant Science, Vol. 146, No. 1, 1999, pp. 9-16.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.