Share This Article:

Relative Response of Four Tomato Species to Rotylenchulus reniformis Infestation

Abstract Full-Text HTML Download Download as PDF (Size:322KB) PP. 55-62
DOI: 10.4236/ajps.2014.51009    3,061 Downloads   4,753 Views  

ABSTRACT


The reniform nematode (Rotylenchulus reniformis) is among the most economically damaging plant pathogens in the United States. This nematode is mostly known for its damage to cotton but tomato is also well-within its vast host range that includes 314 plant species across 77 plant families. Nematode-resistant genotypes offer an effective, environmentally safe alternative to agro-chemicals for reniform nematode management. Resistance genes can be introgressed into cultivars through plant improvement efforts. Tomato is a diploid species which is more amenable to identification of resistance genes in contrast to cotton where cultivars are either tetraploid or hexaploid.This greenhouse study examined cultivated and wild Solanum species represented by 40 tomato accessions, to identify resistance and susceptibility responses to R. reniformis. Accessions were evaluated by using single plants in six replicates. Seeds were germinated in sterile soil and inoculated with mixed vermiform R. reniformis. After seven weeks, eggs and vermiform stages were extracted from the root system and counted. A susceptible control S. lycopersicumRutgers (LA1090) was included. Seven putatively resistant tomato genotypes were identified. These genotypes in increasing order of resistance are S. chilense (LA1029), S. lycopersicum (LA1792), S. chilense (LA1932), S. peruvianum var. humifusum (LA0385) S. pimpinellifolium (LA2934), S. peruvianum f. glandulosum (LA1283) and S. pimpinellifolium (LA1579).


Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. McEwan, R. Kantety, S. Nyaku, K. Lawrence, E. Santen and G. Sharma, "Relative Response of Four Tomato Species to Rotylenchulus reniformis Infestation," American Journal of Plant Sciences, Vol. 5 No. 1, 2014, pp. 55-62. doi: 10.4236/ajps.2014.51009.

References

[1] J. Ho, R. Weide, H. M. Mai, M. F. van Wordragen, K. N. Lambed, M. Koornneef, P. Zabe and V. M. Williamson, “The Root-Knot Nematode Resistance Gene (Mi) in Tomato: Construction of a Molecular Linkage Map and Identification of Dominant cDNA Markers in Resistant Genotypes,” The Plant Journal, Vol. 2, 1992, pp. 971-982.
[2] A. F. Robinson, “Cotton Nematodes,” In: C. W. Smith and J. T. Cothren, Eds., Cotton: Origin, History, Technology, and Production, John Wiley & Sons, New York, 1999, pp. 595-615.
[3] J. E. Erpelding and S. R. Stetina, “Genetics of Reniform Nematode Resistance in Gossypium arboreum Germplasm Line PI 529728,” World Journal of Agricultural Research, Vol. 1, 2013, pp. 48-53.
[4] P. Agudelo, R. T. Robbins, K. S. Kim and J. M. Stewart, “Histological Changes in Gossypium hirsutum Associated with Reduced Reproduction of Rotylenchulus reniformis,” Journal of Nematology, Vol. 37, 2005, pp. 185-189.
[5] D. B. Weaver, K. S. Lawrence and E. van Santen, “Reniform Nematode Resistance in Upland Cotton Germplasm,” Crop Science, Vol. 47, No. 1, 2007, pp. 19-24.
http://dx.doi.org/10.2135/cropsci2006.02.0130
[6] C. M. Rick and J. I. Yoder, “Classical and Molecular Genetics of Tomato: Highlights and Perspectives,” Annual Review of Genetics, Vol. 22, 1988, pp. 281-300.
http://dx.doi.org/10.1146/annurev.ge.22.120188.001433
[7] F. Jaiteh, C. Kwoseh and R. Akromah, “Evaluation of Tomato Genotypes for Resistance to Root-Knot Nematodes,” African Crop Science Journal, Vol. 20, 2012, pp. 41-49.
[8] J. J. Fillatti, J. Kiser, R. Rose and L. Comai, “Efficient Transfer of Glyphosate Tolerance Gene into Tomato Using Binary Agrobacterium tumefaciens Vector,” Nature Biotechnology, Vol. 5, 1987, pp. 726-730.
http://dx.doi.org/10.1038/nbt0787-726
[9] K. Arumuganathan and E. D. Earle, “Nuclear DNA Content of Some Important Plant Species,” Plant Molecular Biology Reporter, Vol. 9, No. 3, 1991, pp. 208-218.
http://dx.doi.org/10.1007/BF02672069
[10] D. G. Peterson, W. R. Pearson and S. M. Stack, “Characterization of the Tomato (Lycopersicon esculentum) Genome Using in Vitro and in Situ DNA Reassociation,” Genome, Vol. 41, 1998, pp. 346-356.
[11] N. Menda, Y. Semel, D. Peled, Y. Eshed and D. Zamir, “In Silico Screening of a Saturated Mutation Library of Tomato,” Plant Journal, Vol. 38, No. 5, 2004, pp. 861-872. http://dx.doi.org/10.1111/j.1365-313X.2004.02088.x
[12] R. Van der Hoeven, C. Ronning, J. Giovannoni, G. Martin and S. Tanksley, “Deductions about the Number, Organization, and Evolution of Genes in the Tomato Genome Based on Analysis of a Large Expressed Sequence Tag Collection and Selective Genomic Sequencing,” Plant Cell, Vol. 14, No. 7, 2002, pp. 1441-1456.
http://dx.doi.org/10.1105/tpc.010478
[13] M. A. Budiman, L. Mao, T. C. Wood and R. A. Wing, “A Deep-Coverage Tomato BAC Library and Prospects Toward Development of an STC Framework for Genome Sequencing,” Genome Research, Vol. 10, 2000, pp. 129-136.
[14] G. Bonnema, J. Hontelez and R. Verkerk, “An Improved Method of Partially Digesting Plant Megabase DNA Suitable for YAC Cloning: Application to the Construction of a 5.5 Genome Equivalent YAC Library of Tomato,” The Plant Journal, Vol. 9, 1996, pp. 125-133.
http://dx.doi.org/10.1046/j.1365-313X.1996.09010125.x
[15] S. D. Tanksley, M. W. Ganal, J. P. Prince, M. C. de Vicente, M. W. Bonierbale, P. Broun, T. M. Fulton, J. J. Giovanonni, S. Grandillo, G. B. Martin, R. Messeguer, J. C. Miller, L. Miller, A. H. Paterson, O. Pineda, M. Roder, R. A.Wing, W. Wu and N. D. Young, “High Density Molecular Linkage Maps of the Tomato and Potato Genomes,” Genetics, Vol. 132, 1992, pp. 1141-1160.
[16] E. Kabelka, W. C. Yang and D. Francis, “Improved Tomato Fruit Color within an Inbred Backcross Line Derived from Lycopersicon esculentum and L. hirsutum Involves the Interaction of Loci,” Journal of the American Society for Horticultural Science, Vol. 129, 2004, pp. 250-257.
[17] R. V. Rebois, B. J. Eldridge, J. M. Good and A. K. Stoner, “Tomato Resistance and Susceptibility to the Reniform Nematode,” Plant Disease Reporter, Vol. 57, 1973, pp. 169-172.
[18] R. V. Rebois, A. E. Steele, A. K. Stoner and B. J. Eldridge, “A Gene for Resistance to Rotylenchulus reniformis in Tomato, and a Possible Correlation with Resistance to Heterodera schachtii,” Journal of Nematology, Vol. 9, 1977, pp. 280-281.
[19] P. Balasubramanian and C. Ramakrishnan, “Resistance to the Reniform Nematode, Rotylenchulus reniformis in Tomato,” Nematologia Mediterranea, Vol. 11, 1983, pp. 203-204.
[20] R. S. Hussey and K. R. Barker, “A Comparison of Methods of Collecting Inocula of Meloidogyne Species, Including a New Technique,” Plant Disease Reporter, Vol. 57, 1973, pp. 1025-1028.
[21] A. F. Robinson, C. G. Cook and A. E. Percival, “Resistance to Rotylenchulus reniformis and Meloidogyne incognita Race 3 in the Major Cotton Cultivars Planted Since 1950,” Crop Science, Vol. 39, 1999, pp. 850-858.
http://dx.doi.org/10.2135/cropsci1999.0011183X003900030039x
[22] C. Yik and B. Wray, “Resistant Germplasm in Gossypium Species and Related Plants to Rotylenchulus reniformis,” Journal of Nematology, Vol. 16, 1984, pp. 146-153.
[23] A. F. Robinson and A. E. Percival, “Resistance to Meloidogyne incognita Race 3 and Rotylenchulus reniformis in Wild Accessions of Gossypium hirsutum and G. barbadense from Mexico,” Journal of Nematology, Vol. 29, 1997, pp. 746-755.
[24] R. T. Robbins, L. Rakes, L. E. Jackson and D. G. Dombek, “Reniform Nematode Resistance in Selected Soybean Cultivars,” Journal of Nematology, Vol. 31, 1999, pp. 667-677.
[25] H. Tsujimoto, “Production of Near-Isogenic Lines and Marked Monosomic Lines in Common Wheat (Triticum aestivum) cv Chinese Spring,” The American Genetic Association, Vol. 92, 2001, pp. 254-259.
[26] T. Kojima, H. Tsujimoto and Y. Ogihara, “High-Resolution RFLP Mapping of the Fertility Restoration (Rf3) Gene against Triticum timopheevi Cytoplasm Located on Chromosome 1BS of Common Wheat,” Genes and Genetic Systems, Vol. 72, 1997, pp. 353-359.
http://dx.doi.org/10.1266/ggs.72.353
[27] G. Kalloo, “Interspecific and Intergeneric Hybridization in Tomato,” In: Kalloo, Ed., Genetic Improvement of Tomato, Springer, New York, 1991, pp. 73-82.
[28] I. Anbinder, M. Reuveni, R. Azari, I. Paran, S. Nahon, H. Shlomo, L. Chen, M. Lapido and I. Levin, “Molecular Dissection of Tomato Leaf Curl Virus Resistance in Tomato Line TY172 Derived from Solanum peruvianum,” Theoretical and Applied Genetics, Vol. 119, 2009, pp. 519-530. http://dx.doi.org/10.1007/s00122-009-1060-z
[29] W. S. Barham and N. N. Winstead, “Inheritance of Resistance to Root-Knot Nematodes in Tomatoes,” Proceedings of the American Society for Horticultural Science, Vol. 69, 1957, pp. 372-377.
[30] B. P. Corbett, L. Jia, R. J. Sayler, L. M. Arevalo-Soliz and F. Goggin, “The Effects of Root-knot Nematode Infection and Mi-Mediated Nematode Resistance in Tomato on Plant Fitness,” Journal of Nematology, Vol. 43, 2011, pp. 82-89.
[31] M. Rossi, F. L. Goggin, S. B. Milligan, I. Kaloshian, D. E. Ullman and V. M. Williamson, “The Nematode Resistance Gene Mi of Tomato Confers Resistance against the Potato Aphid,” Proceedings of the National Academy of Sciences, Vol. 95, 1998, pp. 9750-9754.
http://dx.doi.org/10.1073/pnas.95.17.9750
[32] J. L. Lozano-Torres, R. H. P. Wilbers, P. Gawronski, J. C. Boshoven, A. Finkers-Tomczak, J. H. G. Cordewener, A. H. P. America, H. A. Overmars, J. W. Van’t Klooster, L. Baranowski, M. Sobczak, M. Ilyas, R. A. L. van der Hoorn, A. Schots, P. J. G. M. de Wit, J. Bakker, A. Goverse and G. Smanta, “Dual Disease Resistance Mediated by the Immune Receptor Cf-2 in Tomato Requires a Common Virulence Target of a Fungus and a Nematode,” Proceedings of the National Academy of Sciences of USA, Vol. 109, 2012, pp. 10119-10124.
http://dx.doi.org/10.1073/pnas.1202867109
[33] M. Pilowsky and D. Zutra, “Screening Wild Tomatoes for Resistance to Bacterial Speck Pathogen (Pseudomonas tomato),” Plant Disease, Vol. 66, 1982, pp. 46-47.
http://dx.doi.org/10.1094/PD-66-46
[34] L. E. Rose, R. W. Michelmore and C. H. Langley, “Natural Variation in the Pto Disease Resistance Gene within Species of Wild Tomato (Lycopersicon). II. Population Genetics of Pto,” Genetics, Vol. 175, 2006, pp. 1307-1319. http://dx.doi.org/10.1534/genetics.106.063602
[35] G. B. Martin, S. H. Brommonschenkel and J. Chunwongse, “Map-Based Cloning of a Protein Kinase Gene Conferring Disease Resistance in Tomato,” Science, Vol. 262, 1993, pp. 1432-1436.
http://dx.doi.org/10.1126/science.7902614
[36] M. W. Ganal, R. Simon, S. Brommonschenkel, M. Arndt, M. S. Phillips, S. D. Tanksley and A. Kumar, “Genetic Mapping of a Wide Spectrum Nematode Resistance Gene (Hero) against Globodera rostochiensis in Tomato,” Molecular Plant-Microbe Interactions, Vol. 8, 1995, pp. 886-891. http://dx.doi.org/10.1094/MPMI-8-0886
[37] M. Sobczak, A. Avrova, J. Jupowicz, M. S. Phillips, K. Ernst and A. Kumar, “Characterization of Susceptibility and Resistance Responses to Potato Cyst Nematode (Globodera Spp.) Infection of Tomato Lines in the Absence and Presence of the Broad-Spectrum Nematode Resistance Hero Gene,” Molecular Plant-Microbe Interactions, Vol. 18, 2005, pp.158-168.
http://dx.doi.org/10.1094/MPMI-18-0158
[38] P. R. Ellis and J. W. Maxon-Smith, “Inheritance of Resistance to Potato Cyst Eelworm (Heterodera rostochiensis Woll.) in the Genus Lycopersicon,” Euphytica, Vol. 20, 1971, pp. 93-101.
http://dx.doi.org/10.1007/BF00146779
[39] K. Ernst, A. Kumar, D. Kriseleit, D. U. Kloos, M. S. Phillips and M. W. Ganal, “The Broad-Spectrum Potato Cyst Nematode Resistance Gene (Hero) from Tomato Is the Only Member of a Large Gene Family of NBSLRR Genes with an Unusual Amino Acid Repeat in the LRR Region,” The Plant Journal, Vol. 31, 2002, pp. 127-136.
http://dx.doi.org/10.1046/j.1365-313X.2002.01341.x
[40] R. W. Michelmore and B. C. Meyers, “Clusters of Resistance Genes in Plants Evolve by Divergent Selection and a Birth-and-Death Process,” Genome Research, Vol. 8, 1998, pp. 1113-1130.
[41] A. F. Robinson, A. A. Bell, N. Dighe, M. A. Menz, R. L. Nichols and D. M. Stelly, “Introgression of Resistance to Nematode Rotylenchulus reniformis into Upland Cotton (Gossypium hirsutum) from G. longicalyx,” Crop Science, Vol. 47, 2007, pp. 1865-1877.
http://dx.doi.org/10.2135/cropsci2006.12.0776
[42] N. D. Dighe, A. F. Robinson, A. A. Bell, M. A. Menz, R. G. Cantrell and D. M. Stelly, “Linkage Mapping of Resistance to Reniform Nematode in Cotton following Introgression from Gossypium longicalyx (Hutch. & Lee),” Crop Science, Vol. 49, 2009, pp. 1151-1164.
http://dx.doi.org/10.2135/cropsci2008.03.0129
[43] G. B. Romano, E. J. Sacks, S. R. Stetina, A. F. Robinson, D. D. Fang, O. A. Gutierrez and J. A. Scheffler, “Reniform Nematode (Rotylenchulus reniformis) Resistance Locus from Gossypium aridum Identified and Introgressed into Upland Cotton (G. hirsutum),” Journal of Nematology, Vol. 41, 2009, pp. 375-376.
[44] E. J. Sacks and A. F. Robinson, “Introgression of Resistance to Reniform Nematode (Rotylenchulus reniformis) into Upland Cotton (Gossypium hirsutum) from G. arboreum and a G. hirsutum/G. aridum Bridging Line,” Field Crops Research, Vol. 112, 2009, pp. 1-6.
http://dx.doi.org/10.1016/j.fcr.2009.01.006
[45] P. E. Urwin, A. Levesley, M. J. McPherson and H. J. Atkinson, “Transgenic Resistance to the Nematode Rotylenchulus reniformis Conferred by Arabidopsis thaliana Plants Expressing Proteinase Inhibitors,” Molecular Breeding, Vol. 6, 2000, pp. 257-264.
http://dx.doi.org/10.1023/A:1009669325944

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.