Wireless Sensor Network Routing Based on Sensors Grouping


Due to the limited communication range of WSN, the sensor is unable to establish direct connection to the data collection station, therefore the collaborative work of nodes is highly necessary. The data routing is one of the most fundamental processes exploring how to transmit data from the sensing field to the data collection station via the least possible number of intermediate nodes. This paper addresses the problem of data routing based on the sensors grouping; it provides a deep insight on how to divide the sensors of a network into separate independent groups, and how to organize these independent groups in order to make them work collaboratively and accomplish the process of data routing within the network.

Share and Cite:

A. Hawbani, X. Wang, Y. Xiong and S. Karmoshi, "Wireless Sensor Network Routing Based on Sensors Grouping," Wireless Sensor Network, Vol. 6 No. 1, 2014, pp. 8-17. doi: 10.4236/wsn.2014.61002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. J. G. Villalba, A. L. S. Orozco, A. T. Cabrera and C. J. B. Abbas, “Routing Protocols in Wireless Sensor Networks,” Sensors, Vol. 9, No. 11, 2009, pp. 8399-8421.
[2] E. Zanaj, M. Baldi and F. Chiaraluce, “Efficiency of the Gossip Algorithm for Wireless Sensor Networks,” In Proceedings of the 15th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split-Dubrovnik, September 2007.
[3] J. C. Martinez, J. Flich, A. Robels, P. Lopez and J. Duato, “Supporting Adaptive Routing in infiniband Networks,” Proceedings of the 11th Eromicro Conference on Parallel, Distributed and Network-Based Processing (Euro-pdp03) 2003.
[4] S. C.-H. Huang, S. Y. Chang, H.-C. Wu and P.-J. Wan, “Analysis and Design of Novel Randomized Broadcast Algorithm for Scalable Wireless Networks in the Interference Channels,” IEEE Transactions on Wireless Communications, Vol. 9, No. 7, 2010, pp. 2206-2215.
[5] H. H. Zhang and J. C. Hou, “Maximising α-Lifetime for Wireless Sensor Networks,” 2007.
[6] M. Cardei and D. Z. Du, “Improving Wireless Sensor Network Lifetime through Power Aware Organization,” Wireless Networks, Vol. 11, No. 3, 2005, pp. 333-340.
[7] S. Poduri and G. Sukhatme, “Constrained Coverage for Mobile Sensor Networks,” IEEE International Conference on Robotics and Automation, New Orleans, April 26-May 1, 2004, pp. 165-172.
[8] A. Chen, S. Kumar, and T.-H. Lai, “Designing Localized Algorithms for BarrierCoverage,” MOBICOM. ACM, 2007.
[9] X. Bai, Z. Yun, D. Xuan, T. Lai and W. Jia, “Optimal Patterns for Four-Connectivity and Full Coverage in Wireless Sensor Networks,” IEEE Transactions on Mobile Computing, 2008.
[10] J. Wu and S. Yang, “Coverage and Connectivity in Sensor Networks with Adjustable Ranges,” International Workshop on Mobile and Wireless Networking (MWN), 2004.
[11] M. Cardei, J. Wu, N. Lu and M. O. Pervaiz, “Maximum Network Lifetime with Adjustable Range,” IEEE Intl. Conf. on Wireless and Mobile Computing, Networking and Communications (WiMob’05), 2005.
[12] M. Cardei, M. T. Thai, Y. Li and W. Wu, “Energy-Efficient Target Coverage in Wireless Sensor Networks,” Proceedings of IEEE Infocom, 2005.
[13] M. Cardei and D.-Z. Du, “Improving Wireless Sensor Network Lifetime through Power Aware Organization,” Wireless Networks, Vol. 11, No. 3, 2005, pp. 333-340.
[14] J. K. Hart and K. Martinez, “Environmental Sensor Networks: A Revolution in the Earth System Science?” Earth-Science Reviews, Vol. 78, No. 3, 2006, pp. 177-191.
[15] Y. Ma, M. Richards, M. Ghanem and Y. Guo, “Air Pollution Monitoring and Mining Based on Hassard Sensor Grid in London,” Sensors, Vol. 8, No. 6, 2008, p. 3601.
[16] H. Ammar, X. F. Wang and Y. Xiong “Sensors Grouping Model for Wireless Sensor Network,” Journal of Sensor Technology, Vol. 3, No. 4, 2013, pp. 133-140.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.