[1]
|
Taylor, C.A. and Humphrey, J.D. (2009) Open problems in computational vascular biomechanics: Hemodynamics and arterial wall mechanics. Computer Methods in Applied Mechanics and Engineering, 198, 3514-3523. http://dx.doi.org/10.1016/j.cma.2009.02.004
|
[2]
|
Shojima, M., et al. (2004) Magnitude and role of wall shear stress on cerebral aneurysm: Computational fluid dynamic study of 20 middle cerebral aneurysms. Stroke, 35, 2500-2505. http://dx.doi.org/10.1161/01.STR.0000144648.89172.0f
|
[3]
|
Cebral, J.R., et al. (2005) Characterization of cerebral aneurysms for assessing risk of rupture by using patientspecific computational hemodynamics models. American Journal Neuroradiology, 26, 2550-2559.
|
[4]
|
Shojima, M., et al. (2005) Role of the bloodstream impacting for and the local pressure elevation in the rupture of cerebral aneurysms. Stroke, 36, 1933-1938. http://dx.doi.org/10.1161/01.STR.0000177877.88925.06
|
[5]
|
Boussel, L.V., et al. (2008) Aneurysm growth occurs at region of low wall shear stress: Patient specific correlation of hemodynamics and growth in a longitudinal study. Stroke, 39, 2997-3002. http://dx.doi.org/10.1161/STROKEAHA.108.521617
|
[6]
|
Cebral, J.R., (2009) Hemodynamics in a lethal basilar artery aneurysm just before its rupture. American Journal Neuroradiology, 30, 95-98. http://dx.doi.org/10.3174/ajnr.A1312
|
[7]
|
Sforza, D.M., Putman, C.M. and Cebral, J.R. (2009) Hemodynamics of cerebral aneurysms. Annual Review of Fluid Mechanics, 41, 91-107. http://dx.doi.org/10.1146/annurev.fluid.40.111406.102126
|
[8]
|
Jou, L.-D. and Mawad, M.E. (2011) Timing and size of flow impingement in a giant intracranial aneurysm at the internal carotid artery. Medical and Biological Engineering and Computing, 49, 891-899. http://dx.doi.org/10.1007/s11517-010-0727-6
|
[9]
|
Penn, D.L., Komotoar, R.J. and Connolly, S. (2011) Hemodynamic mechanisms underlying cerebral aneurysm pathogenesis. Journal of Clinical Neuroscience, 18, 1435-1438. http://dx.doi.org/10.1016/j.jocn.2011.05.001
|
[10]
|
Kerber, C.W., Imbesi, S.G. and Knox, K. (1999) Flow dynamics in a lethal anterior communicating artery aneurysm. American Journal Neuroradiology, 20, 2000-2003.
|
[11]
|
Steinman, D.A., et al. (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. American Journal of Neuroradiology, 24, 559-566.
|
[12]
|
Valencia, A. and Solis, F. (2006) Blood flow dynamics and arterial wall interaction in a saccular aneurysm model fo the basilar artery. Computers and Structures, 84, 1326-1337. http://dx.doi.org/10.1016/j.compstruc.2006.03.008
|
[13]
|
Chen A., Sayre, J. and Vinuela, F. (2013) Quantitative comparison of the dynamic flow waveform changes in 12 ruptured and 29 unruptured ICA-ophthalmic artery aneurysms. Neuroradiology, 55, 313-320. http://dx.doi.org/10.1007/s00234-012-1108-7
|
[14]
|
Hodis, S., et al. (2013) Computational fluid dynamics simulation of an anterior communicating artery ruptured during angiography. Journal of Neurointerventional Surgery. http://dx.doi.org/10.1136/neurintsurg-2012-010596.rep
|
[15]
|
Grinberg, L. and Karniadakis, G.E. (2008) Outflow boundary conditions for arterial networks with multiple outlets. Annals of Biomedical Engineering, 36, 1496-1514. http://dx.doi.org/10.1007/s10439-008-9527-7
|
[16]
|
Marzo, A., et al. (2010) Computational hemodynamics in cerebral aneurysms: The effects of modeled versus measured boundary conditions. Annals of Biomedical Engineering, 39, 884-896. http://dx.doi.org/10.1007/s10439-010-0187-z
|
[17]
|
Hodis, S. and Zamir, M. (2011) Pulse wave velocity as a diagnostic index: The pitfalls of tethering versus stiffening of the arterial wall. Journal of Biomechanics, 44, 1367-1373. http://dx.doi.org/10.1016/j.jbiomech.2010.12.029
|
[18]
|
Hodis, S. and Zamir, M. (2011) Mechanical events within the arterial wall under the forces of pulsatile flow: A review. Journal of the Mechanical Behavior of Biomedical Materials, 4, 1595-1602. http://dx.doi.org/10.1016/j.jmbbm.2011.01.005
|
[19]
|
Cavazzuti, M., Atherton, M.A., Collins, M.W. and Barozzi, G.S. (2010) Non-Newtonian and flow pulsatility effects in simulation models of a stented intracranial aneurysm. Proceedings of the Institution of Mechanical Engineers, Part H, 225, 597-609.
|
[20]
|
Cavazzuti, M., Atherton, M.A., Collins, M.W. and Barozzi, G.S. (2010) Beyond the virtual intracranial stenting challenge 2007: Non-Newtonian and flow pulsatility effects. Journal of Biomechanics, 43, 2645-2647. http://dx.doi.org/10.1016/j.jbiomech.2010.04.042
|
[21]
|
Xiang, J., et al. (2012) Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk. Journal Neurointerventional Surgery, 4, 351-357. http://dx.doi.org/10.1136/neurintsurg-2011-010089
|
[22]
|
Hodis, S., et al. (2012) Grid convergence errors in hemodynamic solution of patient-specific cerebral aneurysms. Journal of Biomechanics, 45, 2907-2913. http://dx.doi.org/10.1016/j.jbiomech.2012.07.030
|
[23]
|
Khakpour, M. and Vafai, K. (2008) A critical assessment of arterial transport models. International Journal of Heat and Mass Transfer, 51, 807-822. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.04.021
|
[24]
|
Khaled, A.R.A. and Vafai, K. (2003) The role of porous media in modeling flow and heat transfer in biological tissues. International Journal of Heat and Mass Transfer, 46, 4989-5003. http://dx.doi.org/10.1016/S0017-9310(03)00301-6
|
[25]
|
Khanafer, K. and Vafai, K. (2006) The role of porous media in biomedical engineering as related to magnetic resonance imaging and drug delivery. Heat and Mass Transfer, 42, 939-953. http://dx.doi.org/10.1007/s00231-006-0142-6
|
[26]
|
Schwalbach, D.B., Plourde, B.D., Abraham, J.P. and Kohler, R.E. (2013) Drug dispersion for singleand multi-lumen catheters. Journal of Biomedical Science and Engineering, 6, 1021-1028. http://dx.doi.org/10.4236/jbise.2013.611127
|
[27]
|
Stark, J.R. Gorman, J.M., Sparrow, E.M., Abraham J.P. and Kohler, R.E. (2013) Controlling the rate of penetration of a therapeutic drug into the wall of an artery by means of a pressurized balloon. Journal of Biomedical Science and Engineering, 6, 527-532. http://dx.doi.org/10.4236/jbise.2013.65067
|
[28]
|
Hoi, Y., Wasserman, B.A., Xie, Y.J., Najjar, S.S., Ferruci, L., Lakatta, E. and Steinman, D.A. (2010) Characterization of volumetric flow rate waveforms at the carotid bifurcation of older adults. Physiological Measurements, 31, 291-302. http://dx.doi.org/10.1088/0967-3334/31/3/002
|
[29]
|
Zamir, M. (2005) The physics of coronary blood flow. Springer, Berlin.
|
[30]
|
Gebreegziabher, T., Sparrow, E.M., Abraham, J.P., Ayorinde, E. and Singh, T. (2011) High-frequency pulsatile pipe flows encompassing all flow regimes. Numerical Heat Transfer, 60, 811-826. http://dx.doi.org/10.1080/10407782.2011.627794
|
[31]
|
Abraham, J.P., Sparrow, E.M. and Lovik, R.D. (2008) Three-dimensional fluid mechanical analysis of blood flow in plaque-narrowed and plaque-free arteries. International Journal of Heat and Mass Transfer, 51, 5633-5641. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.04.038
|
[32]
|
Walburn, F. and Schneck, D. (1976) A constitutive equation for whole human blood. Biorheology, 13, 201-210.
|
[33]
|
Idelchik, I.E. (1986) Handbook of hydraulic resistance. Hemisphere Publishing, New York.
|