[1]
|
C. P. Viazminsky and P. Vizminiska, “On the Gravitational Two-Body System and an Infinite Set of Laplace-Runge-Lenz Vectors,” Applied Mathematics, Vol. 4, No. 5, 2013, pp. 774-784.
|
[2]
|
A. Alemi, “Laplace-Runge-Lenz Vector,” 2009. www.cds.Caltech.edu/Wiki/Alemicds205final.pdf
|
[3]
|
E. L. Butikov, “The Velocity Hodograph for Arbitrary Keplerian Motion,” European Journal of Physics, Vol. 21, No. 4, 2000, pp. 1-6.
|
[4]
|
Wikipedia, “Laplace-Runge-Lenz Vector,” 2013. http://en.wikipedia.org/wiki/Laplace%E2%80%93Runge%E2%80%93Lenz_vector
|
[5]
|
W. R. Hamilton, “The Hodograph or a New Method of Expressing in Symbolic Language the Newtonian Law of Attraction,” Proceedings of the Royal Irish Academy, Vol. 3, 1847, pp. 344-353.
|
[6]
|
W. R. Hamilton, “Applications of Quaternions to Some Dynamical Questions,” Proceedings of the Royal Irish Academy, Vol. 3, Appendix III, 1847, p. xxxvi-1.
|
[7]
|
S. W. Groesberg, “Advanced Mechanics,” John Wiley & Sons, Inc., Hopoken, 1998.
|
[8]
|
H. Goldstein, C. P. Poole and J. L. Safko, “Classical Mechanics,” Addison Wesley, Boston, 2001.
|
[9]
|
S. R. Spiegel, “Theoretical Mechanics,” Schaum Outline Series, McGraw Hill Book Company, New York, 1967.
|
[10]
|
W. Rindler, “Essential Relativity,” Springr-Verlag, Berlin, 2006.
|
[11]
|
F. D. Lawden, “Tensor Calculus and Relativity,” Chapman and Hall, London, 1975.
|
[12]
|
L. D. Landau and E. M. Lifshitz, “The Classical Theory of Fields,” Pergamon International Library, Pergamon, 1980.
|
[13]
|
http://en.wikipedia.org/wiki/Equivalence_principle
|
[14]
|
A. Einstein, “Relativity, the Special and General Theory,” Henry Holt and Company, New York, 1920.
|
[15]
|
C. Pollock. http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Pollock.pdf
|
[16]
|
L. P. Eisenhart, “Riemannian Geometry,” Princeton University Press, Princeton, 1968.
|