On the Efficiency for Non-Endoreversible Stirling and Ericsson Cycles


An analysis of the Stirling and Ericsson cycles from the point of view of the finite time thermodynamics is made by assuming the existence of internal irreversibilities in an engine modeled by these cycles, and the ideal gas as working substance is considered. Expressions of efficiency in both regimes maximum power output and maximum ecological function are also shown. Appropriate variables are introduced so that the objective functions, namely power output, ecological function and efficiency can be functions of the reservoirs temperatures ratio and certain “measurable” parameters as a thermal conductance, the general constant of gases and the compression ratio of the cycle. Several results from the finite time thermodynamics literature are used, so that the developed methodology leads directly to appropriate expressions of the objective functions in order to simplify the optimization process.

Share and Cite:

D. Ladino-Luna, P. Portillo-Díaz and R. Páez-Hernández, "On the Efficiency for Non-Endoreversible Stirling and Ericsson Cycles," Journal of Modern Physics, Vol. 4 No. 12B, 2013, pp. 1-7. doi: 10.4236/jmp.2013.412B001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. W. Zemansky and R. H. Dittman, “Heat and Thermodynamics,” McGraw-Hill Book Company, Boston, 1968, Chap. 7.
[2] K. Wark, “Thermodynamics,” McGraw-Hill Book Company, New York, 1983, Chap. 16.
[3] E. E. Daub, The British Journal for the History of Science, Vol. 7, 1974, pp. 269-257.
[4] T. K. O. Pettingil, “Thermodynamics of Stirling Type Engines for the Artificial Heart,” Master Degree Thesis, McMaster University, Hamilton, 1977.
[5] J. R. Howell and R. B. Bannerot, Solar Energy, Vol. 19, 1977, pp. 149-153.
[6] R. W. Satz, Energy Communications and Managements, Vol. 20, 1980, pp. 49-63.
[7] H. Yayama and A. Tomokiyo, IEEE Transactions on Magnetics, Vol. MAG-23, 1987, pp. 2850-2852.
[8] F. Angulo-Brown and G. Ramos-Madrigal, Revista Mexicana de Física, Vol. 36, 1990, pp. 363-375.
[9] V. Badescu, Energy, Vol. 17, 1992, pp. 601-607.
[10] D. A. Blank and Ch. Wu, Energy Converse Management, Vol. 37, 1996, pp. 59-66.
[11] J. Chen, Z. Yan, L. Chen and B. Andresen, International Journal of Energy Research, Vol. 22, 1998, pp. 805-812.
[12] D. A. Blank and Ch. Wu, Applied Thermal Engineering, Vol. 18, 1998, pp. 1347-1357.
[13] S. Ch. Kaushik, S. K. Tyagi, S. K. Bose and M. K. Singhal, International Journal of Thermal Sciences, Vol. 41, 2002, pp. 193-200.
[14] S. K. Tyagi, S. C. Kaushik and M. K. Singhal, Energy Convertion and Management, Vol. 43, 2002, pp. 2297-2309. http://dx.doi.org/10.1016/S0196-8904(01)00181-9
[15] S. K. Tyagi, S. C. Kaushik and R. Salohtra, Journal Physics D: Applied. Physics, Vol. 35, 2002, pp. 2058-2065.
[16] S. K. Tyagi, S. C. Kaushik and R. Salohtra, Journal Physics D: Applied Physics, Vol. 35, 2002, pp. 2668-2675.
[17] B. Kongtragool and S. Wongwises, Renewable and Sustainable Energy Reviews, Vol. 7, 2003, pp. 131-154.
[18] S. K. Tyagi, G. Lin, S. C. Kaushik and J. Chen, International Journal of Refrigeration, Vol. 27, 2004, pp. 924-931. http://dx.doi.org/10.1016/j.ijrefrig.2004.04.016
[19] U. Lucia, “Thermoeconomic Analysis of an Irreversible Stirling Heat Pump Cycle,” 2005.
[20] I. Tlili, Renewable and Sustainable Energy Reviews, Vol. 16, 2012, pp. 2234-2241.
[21] F. L. Curzon and B. Ahlborn, American Journal Physics, Physics Review A, Vol. 15, 1976, pp. 2086-2093.
[22] B. Andresen, R. S. Berry, B. Nitzan and P. Salamon, Physics Review A, Vol. 15, 1976, pp. 2086-2093.
[23] P. Salamon, B. Andresen and R. S. Berry, Physics Review A, Vol. 15, 1976, pp. 2094-2101.
[24] D. Gutkowics-Krusin, I. Procaccia and J. Ross, Journal of Chemical Physics, Vol. 69, 1978, pp. 3898-3906.
[25] M. Rubin, Physics Review A, Vol. 19, 1979, pp. 1272-1276. http://dx.doi.org/10.1103/PhysRevA.19.1272
[26] M. Rubin, Physics Review A, Vol. 19, 1979, pp. 1277-1288. http://dx.doi.org/10.1103/PhysRevA.19.1277
[27] M. Rubin, Physics Review A, Vol. 22, 1980, pp. 1741-1752. http://dx.doi.org/10.1103/PhysRevA.22.1741
[28] P. Salamon and A. Nitzan, Physics Review A, Vol. 21, 1980, pp. 2115-2129.
[29] I. I. Novikov, Journal of Nuclear Energy II, Vol. 7, 1958, pp. 125-128.
[30] P. Chambadal, “Les Centrales Nucleares,” Armand Colin Publisher, Paris,1957, pp. 41-58.
[31] O. M. Ibrahim, S. A. Klein and J. W. Mitchell, Journal of Engineering for Gas Turbines and Power, Vol. 113, 1991, pp. 514-521. http://dx.doi.org/10.1115/1.2906271
[32] J. Chen, Journal Physics D: Applied Physics, Vol. 17, 1994, pp. 1144-1149.
[33] S. Velasco, J. M. M. Roco, A. Medina, J. A. White and A. Calvo-Hernández, Journal Physics D: Applied Physics, Vol. 33, 2000, pp. 355-359.
[34] F. Angulo-Brown, Journal Applied Physics, Vol. 69, 1991, pp. 7465-7469. http://dx.doi.org/10.1063/1.347562
[35] D. Ladino-Luna, Entropy, Vol. 9, 2005, pp. 186-197.
[36] D. Ladino-Luna, Journal of the Energy Institute, Vol. 84, 2011, pp. 61-65.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.