MHD Flow, and Heat Transfer with Effects of Buoyancy, Viscous and Joules Dissipation over a Nonlinear Vertical Stretching Porous Sheet with Partial Slip

Abstract Full-Text HTML XML Download Download as PDF (Size:660KB) PP. 285-291
DOI: 10.4236/eng.2011.33033    7,470 Downloads   16,482 Views   Citations

ABSTRACT

In this paper, the problem of steady laminar two-dimensional boundary layer MHD flow and heat transfer of an incompressible viscous fluid with the presence of buoyancy force and viscous dissipation over an vertical nonlinear stretching sheet with partial slip is investigated numerically. Numerical solutions of the resulting nonlinear boundary value problem in the case when the sheet stretches with a velocity varying nonlinearly with the distance is carried out. The effects of for various values of suction parameter, magnetic parameter, Prandtl number, Eckert number, buoyancy parameter, nonlinear stretching parameter and slip parameter on flow and heat transfer characteristics is investigated.

Cite this paper

M. Abel, K. Kumar and R. Ravikumara, "MHD Flow, and Heat Transfer with Effects of Buoyancy, Viscous and Joules Dissipation over a Nonlinear Vertical Stretching Porous Sheet with Partial Slip," Engineering, Vol. 3 No. 3, 2011, pp. 285-291. doi: 10.4236/eng.2011.33033.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. C. Sakiadis, “Boundary-Layer Behavior on Continuous Solid Surfaces: I Boundary Layer Equations for Two Dimensional and Axisymmetric Flow,” AIChE Journal, Vol. 7, No. 1, 1961, pp. 26-28. doi:10.1002/aic.690070108
[2] R. Cortell, “Effects of Viscous Dissipation and Work Done by Deformation on the MHD Flow and Heat Transfer of a Viscoelastic Fluid over a Stretching Sheet,” Physics Letters A, Vol. 357, No. 4-5, 2006, pp. 298-305. doi:10.1016/j.physleta.2006.04.051
[3] H. Xu and S. J. Liao, “Series Solutions of Unsteady Magnetohydrodynamics Flows of Non-Newtonian Fluids Caused by an Impulsively Stretching Plate,” Journal of Non- Newtonian Fluid Mechanics, Vol. 159, 2005, pp. 46-55. doi:10.1016/j.jnnfm.2005.05.005
[4] M. Sajid and T. Hayat, “Influence of Thermal Radiation on the Boundary Layer Flow due to an Exponentially Stretching Sheet,” International Com-munications in Heat and Mass Transfer, Vol. 35, No. 3, 2008, pp. 347-356. doi:10.1016/j.icheatmasstransfer.2007.08.006
[5] K. Vajravelu and A. Hadjinicolaou, “Heat Transfer in a Viscous Fluid over a Stretching Sheet with Viscous Dissipation and Internal Heat Generation,” International Communications in Heat and Mass Transfer, Vol. 20, No. 3, 1993, pp. 417-430. doi:10.1016/0735-1933(93)90026-R
[6] T. C. Chaim, “Mag-netohydrodynamic Heat Transfer over a Non-Isothermal Stret-ching Sheet,” Acta Mechanica, Vol. 122, No. 1-4, 1977, pp. 169-179. doi:10.1007/BF01181997
[7] M. Sajid, T. Hayat and S. Asg-har, “Non-Similar Analytic Solution for MHD Flow and Heat Transfer in a Third- Order Fluid over a Stretching Sheet,” Inter-national Journal of Heat and Mass Transfer, Vol. 50, No. 9-10, 2007, pp. 1723-1736. doi:10.1016/j.ijheatmasstransfer.2006.10.011
[8] M. S. Abel, E. Sanjayanand and M. M. Nandeppanavar, “Viscoelastic MHD Flow and Heat Transfer over a Stre- tching Sheet with Viscous and Ohmic Dissipations,” Com- munications in Nonlinear Science and Numerical Simulation, Vol. 13, No. 9, 2008, pp. 1808-1821. doi:10.1016/j.cnsns.2007.04.007
[9] A. Pantokratoras, “Study of MHD Boundary Layer Flow over a Heated Stretching Sheet with Variable Viscosity: A Numerical Reinvestigation,” Inter-national Journal of Heat and Mass Transfer, Vol. 51, No. 1-2, 2008, pp. 104- 110. doi:10.1016/j.ijheatmasstransfer.2007.04.007
[10] A. Ishak, R. Nazar and I. Pop, “Mixed Convection Boundary Layer in the Stagnation Point Flow towards Stretching Vertical Sheet,” Meccanica, Vol. 41, No. 5, 2006, pp. 509-518. doi:10.1007/s11012-006-0009-4
[11] M. A. Hossain and H. S. Takhar, “Radiation Effect on Mixed Convection along a Vertical Plate with Uniform Surface Temperature,” Heat Mass Transfer, Vol. 31, No. 4, 1996, pp. 243-248. doi:10.1007/BF02328616
[12] K. Vajravelu, “Fluid Flow over a Nonlinearly Stretching Sheet,” Applied Mathematics and Computation, Vol. 181, No. 1, 2006, pp. 609-618. doi:10.1016/j.amc.2005.08.051
[13] R. Cortell, “MHD Flow and Heat Transfer of an Electrically Conducting Fluid of Second Grade in a Porous Medium over a Stretching Sheet Subject with Chemically Reactive Species,” Chemical Engineering and Processing, Vol. 46, No. 8, 2007, pp. 721-728. doi:10.1016/j.cep.2006.09.008
[14] R. Cortell, “Viscous Flow and Heat Transfer over a Non- Linearly Stretching Sheet,” Ap-plied Mathematics and Com- putation, Vol. 184, No. 2, 2007, pp. 864-873. doi:10.1016/j.amc.2006.06.077
[15] A. Raptis and C. Perdikis, “Viscous Flow over a Non- Linearly Stretching Sheet in the Presence of a Chemical Reaction and Magnetic Field,” Interna-tional Journal of Non-Linear Mechanics, Vol. 41, No. 4, 2006, pp. 527- 529. doi:10.1016/j.ijnonlinmec.2005.12.003
[16] Z. Abbas and T. Hayat, “Radiation Effects on MHD Flow in a Porous Space,” International Journal of Heat and Mass Trans-fer, Vol. 51, No. 5-6, 2008, pp. 1024-1033. doi:10.1016/j.ijheatmasstransfer.2007.05.031
[17] R. Cortell, “Effects of Viscous Dissipation and Radiation on the Thermal Boundary Layer over a Non-Linearly Stretching Sheet,” Physics Letters A, Vol. 372, No. 5, 2008, pp. 631-336. doi:10.1016/j.physleta.2007.08.005
[18] S. A. Kechil and I. Hashim, “Series Solution of Flow over Nonlinearly Stretching Sheet with Chemical Reaction and Magnetic Field,” Physics Letters A, Vol. 372, No. 13, 2008, pp. 2258-2263. doi:10.1016/j.physleta.2007.11.027
[19] R. Cortell, “Similarity Solution for Flow and Heat Transfer of a Quiescent Fluid over a Non-Linearly Stretching Surface,” Journal of Materials Processing Technology, Vol. 203, No. 1-3, 2008, pp. 176-183. doi:10.1016/j.jmatprotec.2007.09.055
[20] M. Romig, “The Influence of Electric and Magnetic Field on Heat Transfer to Electrically Conducting Fluids,” Advances in Heat Transfer, Vol. 1, 1964, pp. 267-354. doi:10.1016/S0065-2717(08)70100-X
[21] E. M. A. Elbash-beshy, “Heat Transfer over a Stretching Surface with Variable Surface Heat Flux,” Journal of Physics D: Applied Physics, Vol. 31, No. 16, 1998, pp. 1951-1955. doi:10.1088/0022-3727/31/16/002
[22] K. Vajravelu and A. Hadjinicolaou, “Convective Heat Transfer in an Electrically Conducting Fluid at a Stretching Surface with Uniform Free Stream,” International Journal of Engineering Science, Vol. 35, No. 12-13, 1997, pp. 1237-1244. doi:10.1016/S0020-7225(97)00031-1
[23] J. P. Grandet, T. Alboussiere and R. Moreau, “Buoyancy Driven Convection in a Rectangular Enclosure with a Transverse Magnetic Field,” International Journal of Heat and Mass Transfer, Vol. 35, No. 4, 1992, pp. 741-748. doi:10.1016/0017-9310(92)90242-K
[24] H. S. Takhar and P. C. Ram, “Magnetohydrodynamic Free Convection Flow of Water at 4 Degree Centigrade, through a Porous Medium,” International Communications in Heat and Mass Transfer, Vol. 21, No. 3, 1994, pp. 371-376. doi:10.1016/0735-1933(94)90005-1
[25] H. M. Duwairi and R. A. Damseh, “Magnetohydrodynamic Natural Convection Heat Transfer from Radiate Vertical Porous Surfaces,” Heat Mass Transfer, Vol. 40, No. 10, 2004, pp. 787-792. doi:10.1007/s00231-003-0476-2
[26] L. C. Burmeister, “Con-vective Heat Transfer,” Wiley, New York, 1983.
[27] W. M. Kays and M. E. Crawford, “Convective Heat and Mass Trans-fer,” 2nd Edition, McGraw-Hill, New York, 1987.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.