[1]
|
T. Umezawa, M. Fujita, Y. Fujita, K. Yamaguchi-Shinozaki and K. Shinozaki, “Engineering Drought Tolerance in Plants: Discovering and Tailoring Genes to Unlock the Future,” Current Opinion in Biotechnology, Vol. 17, No. 2, 2006, pp. 113-122. http://dx.doi.org/10.1016/j.copbio.2006.02.002
|
[2]
|
J. C. Cushman and H. J. Bohnert, “Genomic Approaches to Plant Stress Tolerance,” Current Opinion in Plant Biology, Vol. 3, No. 2, 2000, pp. 117-124. http://dx.doi.org/10.1016/S1369-5266(99)00052-7
|
[3]
|
V. Chinnusamy, K. Schumaker and J. Zhu, “Molecular Genetic Perspectives on Cross-Talk and Specificity in Abiotic Stress Signalling in Plants,” Journal of Experimental Botany, Vol. 55, No. 395, 2004, pp. 225-236. http://dx.doi.org/10.1093/jxb/erh005
|
[4]
|
M. Seki, T. Umezawa, K. Urano and K. Shinozaki, “Regulatory Metabolic Networks in Drought Stress Responses,” Current Opinion in Plant Biology, Vol. 10, No. 3, 2007, pp. 296-302. http://dx.doi.org/10.1016/j.pbi.2007.04.014
|
[5]
|
M. Seki, M. Narusaka, J. Ishida, T. Nanjo, M. Fujita, Y. Oono, A. Kamiya, M. Nakajima, A. Enju, T. Sakurai, M. Satou, K. Akiyama, T. Taji, K. Yamaguchi-Shinozaki, .P. Carninci, J. Kawai, Y. Hayashizaki and K. Shinozaki, “Monitoring the Expression Profiles of 7000 Arabidopsis Genes under Drought, Cold and High-Salinity Stresses Using a Full-Length cDNA Microarray,” Plant Journal, Vol. 31, No. 3, 2002, pp. 279-292. http://dx.doi.org/10.1046/j.1365-313X.2002.01359.x
|
[6]
|
M. A. Rabbani, K. Maruyama, H. Abe, M. A. Khan, K. Katsura, Y. Ito, K. Yoshiwara, M. Seki, K. Shinozaki and K. Yamaguchi-Shinozaki, “Monitoring Expression Profiles of Rice Genes under Cold, Drought, and High-Salinity Stresses and Abscisic Acid Application Using cDNA Microarray and RNA Gel-Blot Analyses,” Plant Physiology, Vol. 133, No. 4, 2003, pp. 1755-1767. http://dx.doi.org/10.1104/pp.103.025742
|
[7]
|
P. Gong, J. Zhang, H. Li, C. Yang, C. Zhang, X. Zhang, Z. Khurram, Y. Zhang, T. Wang, Z. Fei and Z. Ye, “Transcriptional Profiles of Drought-Responsive Genes in Modulating Transcription Signal Transduction, and Biochemical Pathways in Tomato,” Journal of Experimental Botany, Vol. 61, No. 13, 2010, pp. 3563-3575. http://dx.doi.org/10.1093/jxb/erq167
|
[8]
|
E. A. Bray, “Genes Commonly Regulated by Water-Deficit Stress in Arabidopsis Thaliana,” Journal of Experimental Botany, Vol. 55, No. 407, 2004, pp. 2331-2341. http://dx.doi.org/10.1093/jxb/erh270
|
[9]
|
M. Seki, M. Satou, T. Sakurai, K. Akiyama, K. Iida, J. Ishida, M. Nakajima, A. Enju, M. Narusaka, M. Fujita, Y. Oono, A. Kamei, K. Yamaguchi-Shinozaki and K. Shinozaki, “RIKEN Arabidopsis Full-Length (RAFL) cDNA and Its Applications for Expression Profiling under Abiotic Stress Conditions,” Journal of Experimental Botany, Vol. 55, No. 395, 2004, pp. 213-223. http://dx.doi.org/10.1093/jxb/erh007
|
[10]
|
R. R. Mir, M. Zaman-Allah, N. Sreenivasulu, R. Trethowan and R. K. Varshney, “Integrated Genomics, Physiology and Breeding Approaches for Improving Drought Tolerance in Crops,” Theoretical and Applied Genetics, Vol. 125, No. 4, 2012, pp. 625-645. http://dx.doi.org/10.1007/s00122-012-1904-9
|
[11]
|
M. R. Foolad, “Genome Mapping and Molecular Breeding of Tomato,” International Journal of Plant Genomics, Vol. 2007, 2007, Article ID: 64358. http://dx.doi.org/10.1155/2007/64358
|
[12]
|
R. Tuberosa and S. Salvi, “Genomics-Based Approaches to Improve Drought Tolerance of Crops,” Trends Plant Science, Vol. 11, No. 8, 2006, pp. 405-412. http://dx.doi.org/10.1016/j.tplants.2006.06.003
|
[13]
|
The Tomato Genome Consortium, “The Tomato Genome Sequence Provides Insights into Fleshy Fruit Evolution,” Nature, Vol. 485, No. 7400, 2012, pp. 635-641. http://dx.doi.org/10.1038/nature11119
|
[14]
|
T. Suprunova, T. Krugman, T. Fahima, G. Chen, I. Shams, A. Korol and E. Nevo, “Differential Expression of Dehydrin Genes in Wild Barley, Hordeum spontaneum, Associated with Resistance to Water Deficit,” Plant, Cell & Environment, Vol. 27, No. 10, 2004, pp. 1297-1308. http://dx.doi.org/10.1111/j.1365-3040.2004.01237.x
|
[15]
|
H. D. Barrs and P. E. Weatherley, “A Re-Examination of the Relative Turgidity Technique for Estimating Water Deficit in Leaves,” Australian Journal of Biological Science, Vol. 15, No. 3, 1962, pp. 413-428.
|
[16]
|
K. J. Livak and T. D. Schmittgen, “Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method,” Methods, Vol. 25, No. 4, 2001, pp. 402-408. http://dx.doi.org/10.1006/meth.2001.1262
|
[17]
|
D. J. Flower and M. M. Ludlow, “Contribution of Osmotic Adjustment to the Dehydration Tolerance of Water-Stressed Pigeonpea (Cajanus cajan (L.) millsp.) Leaves,” Plant, Cell & Environment, Vol. 9, No. 1, 1986, pp. 33-40.
|
[18]
|
P. Rampino, S. Pataleo, C. Gerardi, G. Mita and C. Perrotta, “Drought Stress Response in Wheat: Physiological and Molecular Analysis of Resistant and Sensitive Genotypes,” Plant, Cell and Environment, Vol. 29, No. 12, 2006, pp. 2143-2152. http://dx.doi.org/10.1111/j.1365-3040.2006.01588.x
|
[19]
|
A. Van Deynze, K Stoffel, C. R. Buell, A. Kozik, J. Liu, E. van der Knaap and D. Francis, “Diversity in Conserved Genes in Tomato,” BMC Genomics, Vol. 8, 2007, p. 465. http://dx.doi.org/10.1186/1471-2164-8-465
|
[20]
|
C. Patanè and S. L. Cosentino, “Effects of Soil Water Deficit on Yield and Quality of Processing Tomato under a Mediterranean Climate,” Agricultural Water Management, Vol. 97, No. 1, 2010, pp. 131-138. http://dx.doi.org/10.1016/j.agwat.2009.08.021
|
[21]
|
C. Jonak, W. Ligterink and H. Hirt, “MAP Kinases in Plant Signal Transduction,” Cellular and Molecular Life Science, Vol. 45, 1999, pp. 204-213. http://dx.doi.org/10.1007/s000180050285
|
[22]
|
R. Ulm, E. Revenkova, G. P di Sansebastiano, N. Bechtold and J. Paszkowski, “Mitogen-Activated Protein Kinase Phosphatase Is Required for Genotoxic Stress Relief in Arabidopsis,” Genes and Development, Vol. 15, No. 6, 2001, pp. 699-709. http://dx.doi.org/10.1101/gad.192601
|
[23]
|
R. R. Finkelstein, S. S. L. Gampala and C. D. Rock, “Abscisic Acid Signaling in Seeds and Seedlings,” Plant Cell, Vol. 14, 2002, pp. S15-S45.
|
[24]
|
M. I. Giombini, N. Frankel N. D. Iusem and E. Hasson, “Nucleotide Polymorphism in the Drought Responsive Gene Asr2 in Wild Populations of Tomato,” Genetica, Vol. 136, No. 1, 2009. pp. 13-25. http://dx.doi.org/10.1007/s10709-008-9295-1
|
[25]
|
M. M. Parra, O. del Pozo, R. Luna, J. A. Godoy and J. A. Pintor-Toro, “Structure of the Dehydrin tas14 Gene of Tomato and Its Developmental and Environmental Regulation in Transgenic Tobacco,” Plant Molecular Biology, Vol. 32, No. 3, 1996, pp. 453-460. http://dx.doi.org/10.1007/BF00019097
|
[26]
|
J. A. Godoy, R. Luna, S. Torres-Schumann, J. Moreno, R. M. Rodrigo and J. A. Pintor-Toro, “Expression, Tissue Distribution and Subcellular Localization of Dehydrin TAS14 in Salt-Stressed Tomato Plants,” Plant Molecular Biology, Vol. 26, No. 6, 1994, pp. 1921-1934. http://dx.doi.org/10.1007/BF00019503
|
[27]
|
S. Torres-Schumann, J. A. Godoy and J. A. Pintor-Toro, “A Probable Lipid Transfer Protein Gene Is Induced by NaCl in Stems of Tomato Plants,” Plant Molecular Biology, Vol. 18, No. 4, 1992, pp. 749-757. http://dx.doi.org/10.1007/BF00020016
|
[28]
|
M. B. Treviño and M. A. O’Connell, “Three Drought-Responsive Members of the Nonspecific Lipid-Transfer Protein Gene Family in Lycopersicon pennellii Show Different Developmental Patterns of Expression,” Plant Physiology, Vol. 116, No. 4, 1998, pp. 1461-1468. http://dx.doi.org/10.1104/pp.116.4.1461
|
[29]
|
T. Kariola, G. Brader, E. Helenius, J. Li, P. Heino and E. T. Palva, “Early Responsive to Dehydration 15, a Negative Regulator of Abscisic Acid Responses in Arabidopsis,” Plant Physiology, Vol. 142, No. 4, 2006, pp. 1559-1573. http://dx.doi.org/10.1104/pp.106.086223
|
[30]
|
T. Kiyosue, K. Yamaguchi-Shinozaki and K. Shinozaki, “ERD15, a cDNA for a Dehydration-Induced Gene from Arabidopsis Thaliana,” Plant Physiology, Vol. 106, No. 4, 1994, p. 1707. http://dx.doi.org/10.1104/pp.106.4.1707
|
[31]
|
O. Ben-Naim, R. Eshed, A. Parnis, P. Teper-Bamnolker, A. Shalit, G. Coupland, A. Samach and E. Lifschitz, “The CCAAT Binding Factor Can Mediate Interactions between CONSTANS-Like Proteins and DNA,” The Plant Journal, Vol. 46, No. 3, 2006, pp. 462-476. http://dx.doi.org/10.1111/j.1365-313X.2006.02706.x
|