Transient Waves Due to Thermal Sources in a Generalized Piezothermoelastic Half-Space

DOI: 10.4236/eng.2011.33029   PDF   HTML   XML   4,625 Downloads   7,855 Views   Citations


This paper is devoted to the study of disturbances due to impact and continuous strip thermal sources, tem- perature or temperature gradient input acting on the rigidly fixed and charge free(open circuit) surface of a homogeneous, transversely isotropic, thermally conducting, generalized piezothermoelastic half-space. The Laplace and Fourier transforms technique have been employed to solve the model consisting of partial dif- ferential equations and boundary conditions in the transformed domain. In order to obtain the results in the physical domain the quadratic complex polynomial characteristic equation corresponding to the associated system of coupled ordinary differential equations has been solved by using DesCartes’ algorithm with the help of irreducible Cardano’s method. The inverse transform integrals are evaluated by using numerical technique consisting of Fourier series approximation and Romberg integration. The temperature change, stresses and electric potential so obtained in the physical domain are computed numerically and presented graphically for cadmium selenide (CdSe) material. The study may find applications in smart structures, pie- zoelectric filters, resonators, transducers, sensing devices and vibration control.

Share and Cite:

J. Sharma, A. Thakur and Y. Sharma, "Transient Waves Due to Thermal Sources in a Generalized Piezothermoelastic Half-Space," Engineering, Vol. 3 No. 3, 2011, pp. 248-259. doi: 10.4236/eng.2011.33029.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] F. Ashida, T. R Tauchert and N. Noda, “Intelligent Struc- tures for Aerospace: A Technology Overview and Assess- ment,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1689- 1700. doi:10.2514/3.12161
[2] F. Ashida and T. R. Tauchert, “Transient Response of a Piezothermoelastics Circular Disc under Axisymmetric Heating,” Acta Mechanica, Vol. 128, No. 1-2, 1998, pp. 1-14. doi:10.1007/BF01463155
[3] Y. Shindo, K. Watanabe and F. Narita, “Electroelastic Analysis of a Pie-zoelectric Ceramic Strip with a Central Crack,” International Journal of Engineering Science, Vol. 38, No. 1, 2000, pp. 1-19. doi:10.1016/S0020-7225(99)00015-4
[4] J. Duhamel, “Second Memoire Sur Les Phenomenon Thermo-Mechanique,” Journal de l'Ecole Polytechnique, Vol. 15, 1937, pp. 1-15.
[5] H. W Lord and Y. Shulmann, “A Generalized Dynamical Theory of Thermoelasticity,” Journal of the Mechanics and Physics of Solids, Vol. 15, No. 5, 1967, pp. 299-309. doi:10.1016/0022-5096(67)90024-5
[6] A. E. Green and K. E. Lindasy, “Thermoelasticity,” Journal of Elasticity, Vol. 2, No. 1, 1972, pp. 1-7. doi:10.1007/BF00045689
[7] D. S. Chandrasekharaiah, “Thermoelasticity with Second Sound—A Review,” Applied Mechanics Review, Vol. 39, No. 3, 1986, pp. 355-376. doi:10.1115/1.3143705
[8] C. C. Ackerman, B. Bentman, H. A. Fairbank and R. A. Krumhansal, “Second Sound in Solid Helium,” Physical Review Letters, Vol. 16, 1966, pp. 789-791. doi:10.1103/PhysRevLett.16.789
[9] C. C. Ackerman and W. C. Overtone, “Second Sound in Solid Helium, 3,” Physical Review Letters, Vol. 22, No. 15, 1969, pp. 764-766. doi:10.1103/PhysRevLett.22.764
[10] R. A. Guyer and J. A. Krumhansl, “Thermal Conductivity, Second Sound and Phononhydrodynamic Phenomena in Nonmetallic Crystals,” Physical Review, Vol. 148, No. 2, 1966, 778-788. doi:10.1103/PhysRev.148.778
[11] A. E. Green and P. M. Nagdhi, “A Re-Examination of the Basic Postulates of Thermodynamics,” Proceedings of the Royal Society A, London, Vol. 432, 1991, pp. 171- 194. doi:10.1098/rspa.1991.0012
[12] A. E. Green and K. E. Lindsay, “On Undamped Heat Waves in an Elastic Solid,” Journal of Thermal Stresses, Vol. 15, No. 2, 1992, pp. 252-264. doi:10.1080/01495739208946136
[13] Green A. E. and Nagdhi P. M., “Thermoelasticity without Energy Dissipation,” Journal of Thermal Stresses, Vol. 31, No. 3, 1993, pp. 189-208.
[14] K. S. Hrinath, “Surface Point Source in Generalized Ther- moelastic Half Space,” Indian Journal of Pure and Applied Mathematics, Vol. 8, 1975, pp. 1347-1351.
[15] K. S. Hrinath, “Surface Line Source in Generalized Ther- Moelastic Half Space,” Indian Journal of Pure and Applied Mathematics, Vol. 11, 1980, pp. 1210-1216.
[16] M. C. Majhi, “Discontinuities in Generalized Thermoelastic Wave Propagation in a Semi-Infinite Piezoelectric Rod,” Journal of Technical Physics, Vol. 36, No. 3, 1995, pp. 269-278.
[17] W. Nowacki, “Some General Theorems of Ther-mo-Piezoelectricity,” Journal of Thermal Stresses, Vol. 1, 1978, pp. 171-182. doi:10.1080/01495737808926940
[18] W. Nowacki, “Foundations of Linear Piezoelectricity,” In: H. Parkus; Ed., Electromagnetic Interactions in Elastic Solids, Springer Verlag, Vienna, 1979.
[19] D. S. Chandrasekhariah, “A Temperature Rate Dependent Theory of Piezoelectricity,” Journal of Thermal Stresses, Vol. 7, 1984, pp. 293-306. doi:10.1080/01495738408942213
[20] D. S. Chandrasekhariah, “Generalized Linear Thermoelasticity Theory of Piezoelectric Media,” Acta Mechanica, Vol. 71, No. 1-4, 1988, pp. 39-49. doi:10.1007/BF01173936
[21] L. Honig and R. S. Dhaliwal, “Thermal Shock Problem in Generalized Thermoelastic Halfspace,” Indian Journal of Pure and Applied Mathematics, Vol. 27, 1996, pp. 85-101.
[22] O. P. Niraula and N. Noda, “Thermal Stresses Analysis of Piezothermoelastic Strip with an Edge Crack,” Journal of Thermal Stresses, Vol. 25, 2002, pp. 389-405. doi:10.1080/014957302753505031
[23] O. P. Niraula and N. Noda, “The Analysis of Thermal Stresses in Thermo-Piezoelastic Semi-Infinite Body with an Edge Crack,” Archive of Applied Mechanics, Vol. 72, No. 2-3, 2002, pp. 119-126. doi:10.1007/s00419-002-0204-2
[24] J. N. Sharma and V. Kumar, “Plane Strain Problems of Transversely Isotropic Thermoelastic Media”, Journal of Thermal Stresses, Vol. 20, 1997, pp. 463-476. doi:10.1080/01495739708956113
[25] J. N. Sharma, A. D. Thakur and Y. D. Sharma, “Disturbance Due to Periodic Thermal Load in a Piezothermoelastic Half-Space,” International Journal of Applied Mechanics, Vol. 1, No. 4, 2009, pp. 607-629. doi:10.1142/S1758825109000320
[26] M. Aouadi, “Electromagneto-Thermoelastic Fundamental Solutions in a Two-Dimensional Problem for Short Time,” Acta Mechanica, Vol. 174, 2005, 223-240. doi:10.1007/s00707-004-0201-3
[27] J. N. Sharma, “Numerical Methods for Engineers and Scientists,” 2nd Edition, Alpha Science International Ltd., Oxford, Narosa Publishing House Pvt. Ltd., New Delhi, 2007.
[28] J. N. Sharma and V. Walia, “Straight and Circular Crested Lamb Waves in Generalized Piezothermoelastic Plates,” Journal of Thermal Stresses, Vol. 29, 2006, pp. 529-551. doi:10.1080/01495730500373552
[29] D. V. Strunin, “On Characteristics Times in Generalized Thermoelasticity,” Journal of Applied Mechanics, Vol. 68, No. 5, 2001, pp. 816-817. doi:10.1115/1.1386696
[30] R. V. Churchill, “Operational Mathematics,” 3rd edition, McGraw-Hill Kogakusha Ltd., Tokyo, 1972.
[31] J. N. Sharma and K. Singh, “Partial Differential Equa- tions for Engineers and Scientists,” 2nd Edition, Alpha Science International Ltd., Oxford, Narosa Pub-lish- ing House Pvt. Ltd., New Delhi, 2009.
[32] G. Honig, and U. Hirdes, “A Method for the Numerical Inversion of the Laplace Transform,” Journal of Computational and Applied Mathematics, Vol. 10, No. 1, 1984, pp. 113-132. doi:10.1016/0377-0427(84)90075-X
[33] B. Bradie “A Friendly Introduction to Numerical Analy- sis,” Pearson Education, Prentice Hall, New Delhi, 2007.
[34] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical Recipes in FORTRAN,” 2nd Edition, Cambridge University Press, Cambridge, 1992.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.