[1]
|
A. F. Rocha, M. N. Burattini, F. T. Rocha and E. Massad, “A Neuroeconomic Modeling of Attention-deficit/Hyperactivity Disorder (ADHD),” Journal of Biological Systems, Vol. 17, 2009, pp. 597-622. http://dx.doi.org/10.1142/S021833900900306X
|
[2]
|
J. D. Greene, R. B. Sommerville, L. E. Nystrom, J. M. Darley and J. D. Cohen, “An fMRI Investigation of Emotional Engagement in Moral Judgment,” Science, Vol. 293, 2001, pp. 2105-2108. http://dx.doi.org/10.1126/science.1062872
|
[3]
|
J. D. Greene, L. E. Nystrom, A. D. Nystrom, A. D. Engel, J. M. Darley and J. D. Cohen, “The Neural Bases of Cognitive Conflict and Control in Moral Judgment,” Neuron, Vol. 44, 2004, pp. 389-400. http://dx.doi.org/10.1016/j.neuron.2004.09.027
|
[4]
|
A. Shenhav and J. D. Greene, “Moral Judgments Recruit Domain-General Valuation Mechanisms to Integrate Representations of Probability and Magnitude,” Neuron, Vol. 67, 2010, pp. 667-677. http://dx.doi.org/10.1016/j.neuron.2010.07.020
|
[5]
|
J. Bentham, “The Principles of Morals and Legislation (Great Books in Philosophy),” 1988 Edition, New York. Prometheus Books.
|
[6]
|
R. D. Pasqual-Marqui, “Standardized Low Resolution Brain Electromagnetic-Tomography (sLORETA): Technical Details,” Methods and Findings in Experimental and Clinical Pharmacology, Vol. 24, 2002, pp. 5-12.
|
[7]
|
R. Adorni and A. M. Proverbio, “The Neural Manifestation of the Word Concreteness Effect: An Electrical Neuroimaging Study,” Neuropsychologia, Vol. 50, 2012, pp. 880-891. http://dx.doi.org/10.1016/j.neuropsychologia.2012.01.028
|
[8]
|
M. Esslen, R. D. Pascual-Marqui, D. Hell, K. Kochi and D. Lehmann, “Brain Areas and Time Course of Emotional Processing,” NeuroImage, Vol. 21, 2004, pp. 189-1203. http://dx.doi.org/10.1016/j.neuroimage.2003.10.001
|
[9]
|
J. J. Foxe and A. C. Snyder, “The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention,” Frontiers in Psychology, Vol. 2, 2011, pp. 1-13 http://dx.doi.org/10.3389/fpsyg.2011.00154
|
[10]
|
C. M. Gómez, J. Marco-Pallarés and C. Graub, “Location of Brain Rhythms and Their Modulation by Preparatory Attention Estimated by Current Density,” Brain Research, Vol. 1107, 2006, pp. 151-160. http://dx.doi.org/10.1016/j.brainres.2006.06.019
|
[11]
|
Y. Jiang, J. Lianekhammy, A. Lawson, C. Guo, D. Lynam, J. E. Joseph, B. T. Gold and T. H. Kelly, “Brain Responses to Repeated Visual Experience among Low and High Sensation Seekers: Role of Boredom Susceptibility Psychiatry Research,” Neuroimaging, Vol. 173, 2009, pp. 100-106
|
[12]
|
T. K. G.Maeno, K. Iramina, F. Eto and S. Ueno, “EventRelated Potential P2 Derived from Visual Attention to the Hemi-Space. Source Localization with Loreta,” International Congress Series, Vol. 1270, 2004, pp. 262-265. http://dx.doi.org/10.1016/j.ics.2004.04.034
|
[13]
|
F. T. Rocha, A. F. Rocha, E. Massad and R. X. Menezes, “Brain Mappings of the Arithmetic Processing in Children and Adults,” Cognitive Brain Research, Vol. 22, 2005, pp. 359-372. http://dx.doi.org/10.1016/j.cogbrainres.2004.09.008
|
[14]
|
A. F. Rocha, F. T. Rocha, M. N. Burattini and E. Massad, “Neurodynamics of an Election,” Brain Research, Vol. 1351, 2010, pp. 198-211. http://dx.doi.org/10.1016/j.brainres.2010.06.046
|
[15]
|
A. F. Rocha, F. T. Rocha and E. Massad, “The Brain as a Distributed Intelligent Processing System: An EEG Study,” PLoS One, Vol. 6, No. 3, 2011, Article ID: E17355. http://dx.doi.org/10.1371/journal.pone.0017355
|
[16]
|
C. L. Harenski and S. Hamann, “Neural Correlates of Regulating Negative Emotions Related to Moral Violations,” Neuroimage, Vol. 30, 2006, pp. 313-324. http://dx.doi.org/10.1016/j.neuroimage.2005.09.034
|
[17]
|
S. W. Chang, J.-F. Gariépy and M. L. Platt, “Neuronal Reference Frames for Social Decisions in Primate Frontal Cortex,” Nature Neuroscience, Vol. 16, 2010, pp. 243-250. http://dx.doi.org/10.1038/nn.3287
|
[18]
|
A. Ikkai and C. E. Curti, “Common Neural Mechanisms Supporting Spatial Working Memory, Attention and Motor Intention,” Neuropsychologia, Vol. 49, No. 6, 2011, pp. 1428-1434. http://dx.doi.org/10.1016/j.neuropsychologia.2010.12.020
|
[19]
|
R. L. E. P. Reniers, R. Corcoran, B. A. Vollm, A. Mashru, R. Howard and P. F. Liddle, “Moral Decision-Making, ToM, Empathy and the Default Mode Network,” Biological Psychology, Vol. 90, 2012, pp. 202-210. http://dx.doi.org/10.1016/j.biopsycho.2012.03.009
|
[20]
|
L. van der Meer, N. A. Groenewold, W. A. Nolen, M. Pijnenborg and A. Alema, “Inhibit Yourself and Understand the Other: Neural Basis of Distinct Processes Underlying Theory of Mind,” Neuroimage, Vol. 56, 2011, pp. 2364-2374. http://dx.doi.org/10.1016/j.neuroimage.2011.03.053
|
[21]
|
P. J Olesen, P. J, H. Westerberg and T. Klingberg, “Increased Prefrontal and Parietal Activity after Training of Working Memory,” Nature Neuroscience, Vol. 7, 2003, pp. 75-79. http://dx.doi.org/10.1038/nn1165
|
[22]
|
Y. Prabhakaran, K. Narayanan, Z. Zhao and J. D. E. Gabrieli, “Integration of Diverse Information in Working Memory within the Frontal Lobe,” Nature Neuroscience, Vol. 3, 2000, pp. 85-90. http://dx.doi.org/10.1038/71156
|
[23]
|
F. Milton, A. J. Wills and T. L. Hodgson, “The Neural Basis of Overall Similarity and Single-Dimension Sorting,” NeuroImage, Vol. 46, 2009, pp. 319-326. http://dx.doi.org/10.1016/j.neuroimage.2009.01.043
|
[24]
|
M. Neta and P. J. Whalen, “Individual Differences in Neural Activity during a Facial Expression vs. Identity Working Memory Task,” Neuroimage, Vol. 56, 2011, pp. 1685-1692. http://dx.doi.org/10.1016/j.neuroimage.2011.02.051
|
[25]
|
H. Y. T.Takeuchi, H. Hashizume, Y. Sassa, T. Nagase, R. Nouchi and R. Kawashim, “Failing to Deactivate: The Association between Brain Activity during a Working Memory Task and Creativity,” NeuroImage, Vol. 55, 2011, pp. 681-687. http://dx.doi.org/10.1016/j.neuroimage.2010.11.052
|
[26]
|
M. A. Thornton and A. R. A. Conwa, “Working Memory for Social Information: Chunking or Domain-Specific Buffer?” Neuroimage, Vol. 70, 2013, pp. 233-239. http://dx.doi.org/10.1016/j.neuroimage.2012.12.063
|
[27]
|
S. Tu, T. H. Li, J. Jou, Q. Zhang, T. Wang, C. Yu and J. Qiu, “An Event-Related Potential Study of Deception to Self Preferences,” Brain Research, Vol. 1247, 2009, pp. 142-148. http://dx.doi.org/10.1016/j.brainres.2008.09.090
|
[28]
|
T. P. Zanto, M. T Rubens, A. Thangavel and A. Gazzale, “Causal Role of the Prefrontal Cortex in Top-Down Modulation of Visual Processing and Working Memory,” Nature Neuroscience, Vol. 14, 2011, pp. 656-661. http://dx.doi.org/10.1038/nn.2773
|
[29]
|
T. Hosokawa, K. Kato, M. Inoue and A. Mikam, “Correspondence of Cue Activity to Reward Activity in the Macaque Orbitofrontal Cortex,” Neuroscience Letters, Vol. 389, 2005, pp. 146-151. http://dx.doi.org/10.1016/j.neulet.2005.07.055
|
[30]
|
E. T. Rolls, H. D. Critchley and J. V. Verhagen, “The Representation of Information about Taste and Odor in the Orbitofrontal Cortex,” Chemosensory Perception, Vol. 3, 2010, pp. 16-33. http://dx.doi.org/10.1007/s12078-009-9054-4
|
[31]
|
M. Platt and S. A. Huettel, “Risky Business: The Neuroeconomics of Decision Making under Uncertainty,” Nature Neuroscience, Vol. 11, 2008, pp. 398-403. http://dx.doi.org/10.1038/nn2062
|
[32]
|
A. Schnider, V. Treyer and A. Buck, “The Human Orbitofrontal Cortex Monitors Outcomes even When No Reward Is at Stake,” Neuropsychologia, Vol. 43, 2005, pp. 316-323. http://dx.doi.org/10.1016/j.neuropsychologia.2004.07.003
|
[33]
|
Y. K. Takahashi, M. R. Roesch, R. C. Wilson, K. Toreson and P. O’Donnell, “Expectancy-Related Changes in Firing of Dopamine Neurons Depend on Orbitofrontal Cortex,” Nature Neuroscience, Vol. 14, 2011, pp. 1590-1597. http://dx.doi.org/10.1038/nn.2957
|
[34]
|
C. M. Ramnani, J. L. Wilson, P. Jezzard, C. S Carter and S. M Smith, “Distinct Portions of Anterior Cingulate Cortex and Medial Prefrontal Cortex Are Activated by Reward Processing in Separable Phases of Decision-Making Cognition,” Biological Psychiatry, Vol. 55, 2004, pp. 594-602. http://dx.doi.org/10.1016/j.biopsych.2003.11.012
|
[35]
|
M. P. Martin, “Acute Administration of Pregabalin Attenuates Amygdala and Insula During Emotional Face Processing and Anticipation in Healthy Volunteers Biological Psychiatry,” Biological Psychiatry, Vol. 73, No. 9, 2013, pp. S249-S249.
|
[36]
|
R. A. Anderson and H. Cui, “Intention, Action Planning, and Decision Making in Parietal-Frontal Circuits,” Neuron, Vol. 63, No. 5, 2009, pp. 568-583.
|
[37]
|
A. P. Fontana, J. M. Kilner, E. C. Rodrigues, M. Joffily, N. Nighoghossian, C. D. Vargas and A. Sirigu, “Role of the Parietal Cortex in Predicting Incoming Actions,” NeuroImage, Vol. 59, No. 1, 2012, pp. 556-564. http://dx.doi.org/10.1016/j.neuroimage.2011.07.046
|
[38]
|
M. D. Hesse, C. M. Thiel, K. E. Stephan and G. R. Fin, “The Left Parietal Cortex and Motor Intention: An EventRelated Functional Magnetic Resonance Imaging Study,” Neuroscience, Vol. 140, No. 4, 2006, pp. 1209-1221. http://dx.doi.org/10.1016/j.neuroscience.2006.03.030
|
[39]
|
E. Jefferies, “The Neural Basis of Semantic Cognition: Converging Evidence from Neuropsychology, Neuroimaging and TMS,” Cortex, Vol. 49, No. 3, 2013, pp. 611-625.
|
[40]
|
M. C. Keuken, A. Hardie, B. T. Dorn, S. Dev, M. P. Paulus, K. J. Jonas, W. P. M. Van Den Wildenberg and J. A. Pineda, “The Role of the Left Inferior Frontal Gyrus in Social Perception: An rTMS Study,” Brain Research, Vol. 1383, 2011, pp. 196-205. http://dx.doi.org/10.1016/j.brainres.2011.01.073
|
[41]
|
K. Sakai and R. E. Passingham, “Prefrontal Interactions Reflect Future Task Operations,” Nature Neuroscience, Vol. 6, No. 1, 2002, pp. 75-81. http://dx.doi.org/10.1038/nn987
|
[42]
|
S. W. Chang, J. F. Gariépy and M. L. Platt, “Neuronal Reference Frames for Social Decisions in Primate Frontal Cortex,” Nature Neuroscience, Vol. 16, No. 2, 2010, pp. 243-250. http://dx.doi.org/10.1038/nn.3287
|
[43]
|
U. Frith and C. D. Frith, “Development and Neurophysiology of Mentalizing,” In: C. Frith and D. Wolpert, Eds., The Neurosciences of Social Interaction, Oxford University Press, Oxford, 2003, pp. 45-75.
|
[44]
|
M. P. Feinstein, D. Leland and A. N. Simmons, “Superior Temporal Gyrus and Insula Provide Response and Outcome-Dependent Information during Assessment and Action Selection in a Decision-Making Situation,” NeuroImage, Vol. 25, No. 2, 2005, pp. 607-615. http://dx.doi.org/10.1016/j.neuroimage.2004.12.055
|
[45]
|
E. T. Rolls and F. Grabenhors, “The Orbitofrontal Cortex and Beyond: From Affect to Decision-Making,” Progress in Neurobiology, Vol. 86, No. 3, 2008, pp. 216-244.
|