[1]
|
S. Niwitpong, “Confidence Intervals for the Normal Mean with Known Coefficient of Variation,” World Academy of Science, Engineering and Technology, Vol. 69, 2012, pp. 677-680.
|
[2]
|
K. Bhat and K. A. Rao, “On Tests for a Normal Mean with Known Coefficient of Variation,” International Statistical Review, Vol. 75, No. 2, 2007, pp. 170-182. http://dx.doi.org/10.1111/j.1751-5823.2007.00019.x
|
[3]
|
V. Brazauskas and J. Ghorai, “Estimating the Common Parameter of Normal Models with Known Coefficients of Variation: A Sensitivity Study of Asymptotically Efficient Estimators,” Journal of Statistical Computation and Simulation, Vol. 77, No. 8, 2007, pp. 663-681. http://dx.doi.org/10.1080/10629360600578221
|
[4]
|
B. Efron, “Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency),” Annals of Statistics, Vol. 3, No. 6, 1975, pp. 1189-1242. http://dx.doi.org/10.1214/aos/1176343282
|
[5]
|
D. T. Searls, “The Utilization of a Known Coefficient of Variation in the Estimation Procedure,” Journal of the American Statistical Association, Vol. 59, No. 308, 1964, pp. 1225-1226. http://dx.doi.org/10.1080/01621459.1964.10480765
|
[6]
|
R. A. Khan, “A Note on Estimating the Mean of a Normal Distribution with Known Coefficient of Variation,” Journal of the American Statistical Association, Vol. 63, No. 323, 1968, pp. 1039-1041. http://dx.doi.org/10.2307/2283896
|
[7]
|
L. J. Gleser and J. D. Healy, “Estimating the Mean of Normal Distribution with Known Coefficient of Variation,” Journal of the American Statistical Association, Vol. 71, No. 356, 1976, pp. 977-981. http://dx.doi.org/10.1080/01621459.1976.10480980
|
[8]
|
A. R. Sen, “Relative Efficiency of Estimators of the Mean of a Normal Distribution When Coefficient of Variation Is Known,” Biometrical Journal, Vol. 21, No. 2, 1979, pp. 131-137. http://dx.doi.org/10.1002/bimj.4710210206
|
[9]
|
H. Guo and N. Pal, “On a Normal Mean with Known Coefficient of Variation,” Calcutta Statistical Association Bulletin, Vol. 54, 2003, pp. 17-29.
|
[10]
|
A. Chaturvedi and S. K. Tomer, “Three-Stage and ‘Accelerated’ Sequential Procedures for the Mean of a Normal Population with Known Coefficient of Variation,” Statistics, Vol. 37, No. 1, 2003, pp. 51-64. http://dx.doi.org/10.1080/0233188031000065433
|
[11]
|
R. Singh, “Sequential Estimation of the Mean of Normal Population with Known Coefficient of Variation,” Metron, Vol. 56, 1998, pp. 73-90.
|
[12]
|
M. Z. Anis, “Estimating the Mean of Normal Distribution with Known Coefficient of Variation,” American Journal of Mathematical and Management Sciences, Vol. 28, No. 3-4, 2008, pp. 469-487. http://dx.doi.org/10.1080/01966324.2008.10737739
|
[13]
|
W. Srisodaphol and N. Tongmol, “Improved Estimators of the Mean of a Normal Distribution with a Known Coefficient of Variation,” Journal of Probability and Statistics, Vol. 2012, 2012, Article ID: 807045. http://dx.doi.org/10.1155/2012/807045
|
[14]
|
D. V. Hinkley, “Conditional Inference about a Normal Mean with Known Coefficient of Variation,” Biometrika, Vol. 64, No. 1, 1977, pp. 105-108. http://dx.doi.org/10.1093/biomet/64.1.105
|
[15]
|
D. A. S. Fraser, N. Reid and J. Wu, “A Simple General Formula for Tail Probabilities for Frequentist and Bayesian Inference,” Biometrika, Vol. 86, No. 2, 1991, pp. 249264. http://dx.doi.org/10.1093/biomet/86.2.249
|
[16]
|
O. E. Barndorff-Nielsen, “Inference on Full or Partial Parameters, Based on the Standardized Signed Log-Likelihood Ratio,” Biometrika, Vol. 73, No. 2, 1986, pp. 307322.
|
[17]
|
O. E. Barndorff-Nielsen, “Modified Signed Log-Likelihood Ratio,” Biometrika, Vol. 78, No. 3, 1991, pp. 557563. http://dx.doi.org/10.1093/biomet/78.3.557
|
[18]
|
D. A. S Fraser, N. Reid and A. Wong, “Simple and Accurate Inference for the Mean Parameter of the Gamma Model,” Canadian Journal of Statistics, Vol. 25, No. 1, 1997, pp. 91-99. http://dx.doi.org/10.2307/3315359
|
[19]
|
Fraser, D.A.S. and Reid, N., “Ancillaries and Third Order Significance,” Utilitas Mathematica, Vol. 7, 1995, pp. 3355.
|