Evolution and impact of cellulose architecture during enzymatic hydrolysis by fungal cellulases

DOI: 10.4236/abb.2013.412146   PDF   HTML     4,077 Downloads   7,580 Views   Citations


The enzymatic hydrolysis of cellulose is still considered as a main limiting step of the biological production of biofuels from ligno-cellulosic biomass. Glycoside hydrolases from Trichoderma reesei are currently used to produce fermentable glucose units from degradation of cellulose packed in a complex assembly of cellulose microfibrils. The present work describes the structural evolution of two prototypical samples of cellulose (a micro-crystalline cellulose and a bleached sulfite pulp) over 5 length scale orders of magnitude. The results were obtained through wide angle, small angle and ultra-small angles synchrotron X-ray scattering, completed by Small Angle Neutron Scattering and particle size analyzers. These structural evolutions were followed as a function of enzymatic conversion. The results show that whereas there is no change at the nanometer scale, drastic changes occur at micron. The observed decrease of the size of the cellulose particles is accompanied by a smoothing of the crystalline surfaces that can be explained by a two-step mechanism of the enzymatic hydrolysis.

Share and Cite:

Chauve, M. , Barre, L. , Tapin-Lingua, S. , Silva Perez, D. , Decottignies, D. , Perez, S. and Ferreira, N. (2013) Evolution and impact of cellulose architecture during enzymatic hydrolysis by fungal cellulases. Advances in Bioscience and Biotechnology, 4, 1095-1109. doi: 10.4236/abb.2013.412146.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Foust, T.S., Ibsen, K.N., Dayton, D.C., Hess, J.R. and Kenney, K.E. (2008) The biorefinery. In: Himmel, M.E. Ed., Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy, Wiley-Blackwell, 7-35.
[2] Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R. and Monot, F. (2009) New improvements for lignocellulosic ethanol. Current Opinion Biotechnology, 20, 372-380. http://dx.doi.org/10.1016/j.copbio.2009.05.009
[3] Bansal, P., Hall, M., Realff, M.J., Lee, J.H. and Bommarius, A.S. (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnology Advances, 27, 833-848. http://dx.doi.org/10.1016/j.biotechadv.2009.06.005
[4] Igarashi, K., Uchihashi, T., Koivula, A., Wada, M., Kimura, S., Okamoto, T., Penttila, M., Ando, T. and Samejima, M. (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science, 333, 1279-1282. http://dx.doi.org/10.1126/science.1208386
[5] Medve, J., Stahlberg, J. and Tjerneld, F. (1994) Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose. Biotechnology and Bioengineering, 44, 1064-1073. http://dx.doi.org/10.1002/bit.260440907
[6] Boisset, C., Petrequin, C., Chanzy, H., Henrissat, B. and Schulein, M. (2001) Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. Biotechnology and Bioengeneering, 72, 339-345.
[7] Nimlos, M.R., Matthews, J.F., Crowley, M.F., Walker, R.C., Chukkapalli, G., Brady, J.W., Adney, W.S., Cleary, J.M., Zhong, L. and Himmel, M.E. (2007) Molecular modeling suggests induced fit of Family I carbohydratebinding modules with a broken-chain cellulose surface. Protein Engineering, 20, 179-187.
[8] Tavagnacco, L., Mason, P.E., Schnupf, U., Pitici, F., Zhong, L., Himmel, M.E., Crowley, M., Cesaro, A. and Brady, J.W. (2011) Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei. Carbohydrate Research, 346, 839-846.
[9] Converse, A.O., Matsumo, R., Tanaka, M. and Taniguchi, M. (1988) A model of enzyme adsorption and hydrolysis of microcrystalline cellilose with slow desactivation of the adsorbed enzyme. Biotechnology and Bioeengineering, 32, 38-45. http://dx.doi.org/10.1002/bit.260320107
[10] Eriksson, T., Karlsson, J. and Tjerneld, F. (2002) A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (cel7A) and endoglucanase I (cel7B) of Trichoderma reesei. Applied Biochemistry Biotechnology, 101, 41-60.
[11] Holtzapple, M., Cognata, M., Shu, Y. and Hendrickson, C. (1990) Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnology and Bioengineering, 36, 275-287. http://dx.doi.org/10.1002/bit.260360310
[12] Zhang, S., Wolfgang, D.E. and Wilson, D.B. (1999) Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotechnology and Bioeengineering, 66, 35-41.
[13] Fan, L.T., Lee, Y.H. and Beardmore, D.H. (1980) Mechanism of the enzymatic-hydrolysis of cellulose. Effects of major structural features of cellulose on enzymatic hydrolysis. Bioetchnology and Bioengineering, 22, 177-199.
[14] Hall, M., Bansal, P., Lee, J.H., Realff, M.J. and Bommarius, A.S. (2010) Cellulose crystallinity—A key predictor of the enzymatic hydrolysis rate. FEBS Journal, 277, 1571-1582.
[15] Nishiyama, Y. (2009) Structure and properties of the cellulose micorfibril. Journal Wood Sciences, 55, 241-249. http://dx.doi.org/10.1007/s10086-009-1029-1
[16] Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Paredez, A., Persson, S., Raab, T., Vorwerk, S. and Youngs, H. (2004) Toward a systems approach to understanding plant cell walls. Science, 306, 2206-2211.
[17] Bayer, E.A., Chanzy, H., Lamed, R. and Shoham, Y. (1998) Cellulose, cellulases and cellulosomes. Current Opinion Structural Biology, 8, 548-557.
[18] Perez, S. and Samain, D. (2010) Structure and engineering of celluloses. Advances Carbohydrate Chemistry Biochemistry, 64, 25-116.
[19] Nishiyama, Y., Sugiyama, J., Chanzy, H. and Langan, P. (2003) Crystal structure and hydrogen bonding system in cellulose I(alpha) from synchrotron X-ray and neutron fiber diffraction. Journal American Chemical Society, 125, 14300-14306. http://dx.doi.org/10.1021/ja037055w
[20] Larsson, P.T., Hult, E.L., Wickholm, K., Pettersson, E. and Iversen, T. (1999) CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nuclear Magnetic Resonance, 15, 31-40.
[21] Mansfield, S.D., Mooney, C. and Saddler, J.N. (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress, 15, 804-816.
[22] Jeoh, T., Ishizawa, C.I., Davis, M.F., Himmel, M.E., Adney, W.S. and Johnson, D.K. (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnology and Bioenginnering, 98, 112-122.
[23] Bommarius, A.S., Katona, A., Cheben, S.E., Patel, A.S., Ragauskas, A.J., Knudson, K. and Pu, Y. (2008) Cellulase kinetics as a function of cellulose pretreatment. Metabolic Engineering, 10, 370-381.
[24] Zhang, Y.H. and Lynd, L.R. (2006) A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnology and Bioeengineering, 94, 888-898.
[25] Arantes, V. and Saddler, J.N. (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: The role of amorphogenesis. Biotechnology Biofuels, 3, 4.
[26] Zhong, L., Matthews, J.F., Hansen, P.I., Crowley, M.F., Cleary, J.M., Walker, R.C., Nimlos, M.R., Brooks 3rd, C.L., Adney, W.S., Himmel, M.E. and Brady, J.W. (2009) Computational simulations of the Trichoderma reesei cellobiohydrolase I acting on microcrystalline cellulose Ibeta: The enzyme-substrate complex. Carbohydrate Research, 344, 1984-1992.
[27] Wang, J., Quirk, A., Lipkowski, J., Dutcher, J.R., Hill, C., Mark, A. and Clarke, A.J. (2012) Real-time observation of the swelling and hydrolysis of a single crystalline cellulose fiber catalyzed by cellulase 7B from Trichoderma reesei. Langmuir, 28, 9664-9672.
[28] Walseth, C.S. (1957) The influence of the fine structure of cellulose on the action of cellulases. TAPPI, 35, 233-238.
[29] Phillipp, B., Dan, C.D. and Fink, F.H.-P. (1981) Acid and enzymatic hydrolysis of cellulose in relation to its physical structure. Proceedings International Symposium on Wood and Pulping Chemistry, 4, 79-83.
[30] Gupta, R. and Lee, Y.Y. (2009) Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnology and Bioengineering, 102, 1570-1581.
[31] Sinitsyn, A.P., Mitkevich, O.V., Giusakov, A.V. and Klyosov, A.A. (1989) Decrease in reactivity and change of physico-chemical parameters of cellulose in the course of enzymatic hydrolysis. Carbohydrate Polymers, 10, 1-14. http://dx.doi.org/10.1016/0144-8617(89)90028-3
[32] Reese, E.T., Segal, L. and Tripp, V.W. (1957) The effect of cellulase on the degree of polymerization of cellulose and hydrocellulose. Textile Research Journal, 27, 626-632. http://dx.doi.org/10.1177/004051755702700806
[33] Chen, Y., Stipanovic, A.J., Winter, W.T., Wilson, D.B. and Kim, Y.J. (2007) Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose, 14, 283-293. http://dx.doi.org/10.1007/s10570-007-9115-2
[34] Zhang, Y.H. and Lynd, L.R. (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioeengineering, 88, 797-824.
[35] Wang, L.S., Zhang, Y.Z., Gao, P.J., Shi, D.X., H.W., L. and Gao, H.L. (2006) Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnology and Bioeengineering, 93, 443-456.
[36] Penttila, P.A., Varnai, A., Leppanen, K., Peura, M., Kallonen, A., Jaaskelainen, P., Lucenius, J., Ruokolainen, J., Siika-Aho, M., Viikari, L. and Serimaa, R. (2010) Changes in submitcrometer structure of enzymatically hydrolyzed microcrystalline cellulose. Biomacromolecules, 11, 1111-1117.
[37] Kent, M.S., Cheng, G., Murton, J.K., Carles, E.L., Dibble, D.C., Zendejas, F., Rodriquez, M.A., Tran, H., Holmes, B., Simmons, B.A., Knierim, B., Auer, M., Banuelos, J.L., Urquidi, J. and Hjelm, R.P. (2010) Study of enzymatic digestion of cellulose by small angle neutron scattering. Biomacromolecules, 11, 357-368.
[38] Cheng, G., Varanasi, P., Li, C., Liu, H., Melnichenko, Y.B., Simmons, B.A., Kent, M.S. and Singh, S. (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules, 12, 933-941. http://dx.doi.org/10.1021/bm101240z
[39] Park, S., Venditti, R.A., Abrecht, D.G., HJammel, H., Pawlak, J.J. and Lee, J.M. (2007) Surface and Pore Structure Modification of Cellulose Fibers Through Cellulase Treatment. Journal of Applied Polymer Sciences, 103, 3833-3839.
[40] Desai, S.G. and Converse, A.O. (1997) Substrate reactiveity as a function of the extent of reaction in the enzymatic hydrolysis of lignocellulose. Biotechnology and Bioengineering, 56, 650-655.
[41] Fan, L.T. and Lee, Y.H. (1983) Kinetic studies of enzymatic hydrolysis of insoluble cellulose: Derivation of a mechanistic kinetic model. Biotechnology and Bioengineering, 25, 2707-2733. http://dx.doi.org/10.1002/bit.260251115
[42] Yang, B., Willies, D.M. and Wyman, C.E. (2006) Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion. Biotechnology and Bioeengineering, 94, 1122-1128. http://dx.doi.org/10.1002/bit.20942
[43] Durand, H. and Tiraby, G. (2010) 9ième colloque de la Société Fran?aise de Microbiologie, 39-50.
[44] Herpoel-Gimbert, I., Margeot, A., Dolla, A., Jan, G., Molle, D., Lignon, S., Mathis, H., Sigoillot, J.C., Monot, F. and Asther, M. (2008) Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnology for Biofuels, 1, 18.
[45] Chauve, M., Lopes Ferreira, N., Casanave, D., Da Silva Perez, D. and Perez, S. (2010) Kinetic modeling of pure cellulases involved in enzymatic hydrolysis of cellulose. 18th European Biomass Conference and Exhibition From Research to Industry and Markets, Lyon, 3-7 May 2010 1380-1387.
[46] Van Nifterik, L., Xu, L., Laurent, J.L., Mathieu, J. and Rakoto, C. (1993) Analysis of cellulose and kraft oulo ozonolysis products by anion-exchange chromatography with pulsed amperometric detection. Journal of Chromatography, 640, 335-343.
[47] Evans, R. and Wallis, A.F.A. (1989) Cellulose molecular weights determined by viscometry. Journal of Applied Polymer Sciences, 37, 2331-2340.
[48] Sztucki, M., Gorini, J., Vassalli, J.P., Goirand, L., Van Vaerenbergh, P. and Narayanan, T. (2008) Optimization of a bonse-hart instrument by suppressing surface parasitic scattering. Journal of Synchrotron Radiation, 15, 341-349. http://dx.doi.org/10.1107/S0909049508008960
[49] Brulet, A., Lairez, D., Lapp, A. and Cotton, J.P. (2007) Imporvement of data treatment in small-angle neutron scattering. Journal of Applied Crystallography, 40, 165-177.
[50] Ma, A., Hu, Q., Qu, Y.B., Bai, Z.H., Liu, W.F. and Zhuang, G.Q. (2008) The enzymatic hydrolyis rate of cellulose decreases with reversible adsorption of cellobiohydrolase I. Enzyme and Microbial Technology, 42, 543-547.
[51] Hong, J., Ye, X. and Zhang, Y.H. (2007) Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir, 23, 12535-12540. http://dx.doi.org/10.1021/la7025686
[52] Zhu, Z., Sathitsuksanoh, N. and Zhang, Y.H. (2009) Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst, 134, 2267-2272. http://dx.doi.org/10.1039/b906065k
[53] Lee, H.J. and Malcolm Brown Jr., R. (1997) A comparative structural characterization of two cellobiohydrolases from Trichoderma reesei: A high resolution electron microscopy study. Journal of Biotechnology, 57, 127-136.
[54] Walker, L.P., Wilson, D.B., Irvin, D.C., McQuire, C. and Price, M. (1992) Fragmentation of Cellulose by the Major Thermomonospora fusca Cellulases, Trichoderma reesei CBHI, and their Mixtures. Biotechnology and Bioengineering, 40, 1019-1026.
[55] Yu, Z., Jameel, H., Chang, H.M., Philips, R. and Park, S. (2012) Evaluation of the factors affecting avicel reactivity using multi-stage enzymatic hydrolysis. Biotechnology and Bioeengineering, 109, 1131-1139.
[56] Zhong, L., Matthews, J.F., Crowley, F., Rignall, T., Talon, C., Cleary, J.M., Walker, R.C., Chukkapalli, G., McCabe, C., Nimlos, M.R., Brooks, C.L., III, Himmel, M.E. and Brady, J.W. (2008) Interactioons of the complete cellobiohydrolase from Trichoderma reesei with Microcrystalline Cellulose Ibeta. Cellulose, 15, 261-273.
[57] Zhang, Y.H.P. and Lynd, L.R. (2005) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules, 6, 1510-1515.
[58] Nishiyama, Y., Johnson, G.P. and French, A.D. (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose, 19, 319-336.
[59] Hurd, A.J., Schaefer, D.W. and Glines, A.M. (1988) SANS Study of Sinstering of Rough Surfaces. Journal of Applied Crystallography, 21, 864-869.
[60] Broseta, D., Barre, L., Vizika, O., Shahidzadeh, N., Guilbaud, J.P. and Lyonnard, S. (2001) Capillary condensation in a fractal porous medium. Physical Review Letters, 86, 5313-5316. http://dx.doi.org/10.1103/PhysRevLett.86.5313
[61] Thygesen, L.G., Hidayat, B.J., Johansen, K.S. and Felby, C. (2011) Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls. Journal of Industrial Microbiology & Biotechnology, 38, 975-983.
[62] Clarke, K., Li, X. and Li, K. (2011) The mechanism of fiber cutting during enzymatic hydrolysis of wood biomass. Biomass and Bioenger, 35, 3943-3950.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.