Gas Exchange and Production of Photosynthetic Pigments of Piper aduncum L. Grown at Different Irradiances


The species Piper aduncum is a plant with great economic potential, because the essential oil has antimicrobial activity and insecticides. Thus, as the light directly affects photosynthesis process, the present study evaluated the gas exchanges variables and photosynthetic pigments production of P. aduncum grown under different irradiances. Treatments consisted in environments with 100%, 70% and 50% of irradiance and environments with colored nets (red and blue). After 150 days of culture, photosynthetic activity (A), stomatal conductance (gs) transpiration rate (E), internal CO2 concentration (Ci), deficit vapor pressure (DVP), leaf temperature, concentration of internal/external CO2 (Ci/Ca), carboxylation efficiency (A/Ci) and efficiency water use (A/E) were evaluated. Pigments chlorophyll a, b, carotenoids, total and chlorophyll a/b ratio were also measured. From the observed data, it can be concluded that the species Piper aduncun developed various mechanisms for adaptation to different irradiance conditions. Moreover, it can be inferred that their photosynthetic process is more efficient and has larger spectral intensities of light, with higher efficiency photosynthetic when grown under 70% and 100% of radiation.

Share and Cite:

F. Pacheco, H. Oliveira Silveira, A. Alvarenga, I. Almeida Alvarenga, J. Pereira Pinto and J. Sousa Lira, "Gas Exchange and Production of Photosynthetic Pigments of Piper aduncum L. Grown at Different Irradiances," American Journal of Plant Sciences, Vol. 4 No. 12C, 2013, pp. 114-121. doi: 10.4236/ajps.2013.412A3014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Fazolin, J. L. V. Estrela, V. Catani and C. R. Costa, “Potencialidades da Pimenta de Macaco (Piper aduncun L.): Características Gerais e Resultados de Pesquisas,” Embrapa Acre, Rio Branco, 2006, p. 53.
[2] S. F. R. Rocha, L. C. Ming, F. C. M. Chaves and F. M. Scarda, “Role of Light and Phytochrome on Piper aduncun L. Germination: An Adaptive and Environmental Approach,” Journal of Herbs, Spices & Medicinal Plant, Vol. 11, No. 3, 2008, pp. 85-96.
[3] M. Fazolin, J. L. V. Estrela, V. Catani, M. S. Lima and M. R. Alécio, “Toxicity of Piper aduncum Oil to Adults of Cerotomatingomarianu Bechyné (Coleoptera: Chrysomelidae),” Neotropical Entomology, Vol. 34, No. 3, 2005, pp. 485-489.
[4] C. R. Lara Junior, G. L. Oliveira, B. C. F. Mota, M. F. G. Fernandes, L. S. Figueiredo, E. R. Martins, D. L. Moreira and M. A. C. Kaplan, “Antimicrobial Activity of Essential Oil of Piper aduncum L. (Piperaceae),” Journal of Medicinal Plants Research, Vol. 21, No. 6, 2012, pp. 3800-3805.
[5] N. Misni, H. Othman and S. Sulaman, “The Effect of Piper aduncum Linn. (Family: Piperaceae) Essential Oil as Aerosol Spray against Aedesaegypti (L.) and Aedesalbopictus Skuse,” Tropical Biomedicine, Vol. 28, No. 2, 2011, pp. 249-258.
[6] P. J. C. Sousa, C. A. L. Barros, J. C. S. Rocha, D. S. Lira, G. M. Monteiro and J. G. S. Bia, “Toxicological Evaluation of the Essential Oil of Piper aduncum L.,” Revista Brasileira de Farmacognosia, Vol. 18, No. 2, 2008, pp. 217-221.
[7] E. J. A. Santiago, J. E. B. P. Pinto, E. M. Castro, O. A. Lameira, H. E. O. Conceição and M. L. Gavilanes, “Aspects of Leaf Anatomy of Long Pepper (Piper hispidinervium C.D.C.) under Different Light Conditions,” Ciência e Agrotecnologia, Vol. 25, No. 5, 2001, pp. 1035-1042.
[8] R. Wang and Z. H. Guo, “Photosynthetic Responses of Schimasuperba Grown in Different Light Regimes of Subtropical Evergreen Broadleaf Forest,” Forest Research, Vol. 20, 2007, pp. 688-693.
[9] L. V. Kurepin, R. J. N. Emery, R. P. Pharis and D. M. Reid, “Uncoupling Light Quality from Light Irradiance Effects in Helianthus annuus Shoots: Putative Roles for Plant Hormones in Leaf and Internode Growth,” Journal of Experimental Botany, Vol. 58, No. 8, 2007, pp. 2145-157.
[10] J. A. Marchese, R. S. Mattana, L. C. Ming, F. Broetto, P. F. Vendramini and R. M. Moraes, “Irradiance Stress Responses of Gas Exchange and Antioxidant Enzyme Contents in Pariparoba [Pothomorpheumbellata (L.) Miq.] Plants,” Photosynthetica, Vol. 46, No. 4, 2008, pp. 501-505.
[11] E. C. Lima Junior, A. A. Alvarenga, E. M. Castro, C. V. Vieira and J. P. R. A. D. Barbosa, “Physioanatomy Traits of Leaves in Young Plants of Cupaniavernalis camb. Subjected to Different Shading Levels,” Brazilian Journal of Forest Science, Vol. 30, No. 1, 2006, pp. 33-41.
[12] V. S. R. Das, “Photosynthesis, Regulation under Varying Light Regimes,” Science Publishers, Inc., Enfield, New Hampshire, 2004.
[13] A. A. Alvarenga, E. M. Castro, E. R. Lima Junior and M. M. Bgalhães, “Effects of Different Light Levels on the Initial Growth and Photosynthesis of Croton urucurana Baill. in Southeastern Brazil,” Brazilian Journal of Forest Science, Vol. 27, No. 1, 2003. pp. 53-57.
[14] J. A. Zavala and D. A. Ravetta, “Allocation of Photoassimilates to bioBss, Resin and Carbohydrates in Grindelia chiloensis as Affected by Light Intensity,” Field Crops Research, Vol. 69, No. 2, 2001, pp. 143-149.
[15] H. K. Lichtenthaler and C. Buschmann, “Chorophylls and Carotenoids: Measurement and Characterization by UVVIS Spectroscopy,” In: R. E. Wrolstad, et al., Eds., Current Protocols in Food Analytical Chemistry, John Wiley & Sons, Davis, 2001.
[16] SAEG, “Sistema para Análises Estatísticas,” Vers.9.1, Fundação Arthur Bernardes-UFV-Viçosa, 2007.
[17] N. K. Boardmann, “Comparative Photosynthesis of Sun and Shade Plants,” Annual Review of Plant Physiology, Vol. 28, 1977, pp. 355-377.
[18] G. S. Souza, E. M. Castro, A. M. Soares, J. E. B. P.Pinto, M. G. Resende and S. K. V. Bertolucci, “Crescimento, Teor de óleo Essencial e Conteúdo de cuBrina de Plantas Jovens de Guaco (Mikaniaglomerata Sprengel) Cultivadas sob Blhas Coloridas,” Biotemas, Vol. 24, No. 3, 2011, pp. 1-11.
[19] M. C. Dias, G. Pinto, C. M. Correia, J. Moutinho-Pereira, S. Silva and C. Santos, “Photosynthetic Parameters of Ulmusminor Plantlets Affected by Irradiance during Acclimatization,” Biologia Plantarum, Vol. 57, No. 1, 2013, pp. 33-40.
[20] J. Y. Yamasaki, “Is Light Quality Involved in the Regulation of the Photosynthetic Apparatus in Attached Rice Leaves?” Photosynthesis Research, Vol. 105, No. 1, 2010, pp. 63-71.
[21] Y. Kong, L. Avraham, K. Ratner and Y. Shahak, “Response of Photosynthetic Parameters of Sweet Pepper Leaves to Light Quality Bnipulation by Photoselective Shade Nets,” Acta Horticulturae, Vol. 956, 2012, pp. 501-506.
[22] G. A. Lobos, J. B. Retamales, J. F. Hancock, J. A. Flore, N. Cobo and A. Pozo, “Spectral Irradiance, Gas Exchange Characteristics and Leaf Traits of Vacciniumcorymbosum L. ‘Elliott’ Grown under Photo-Selective Nets,” Environmental and Experimental Botany, Vol. 75, 2012, pp. 142-149.
[23] R. Pieruschka, G. Huber and J. A Berry, “Control of Transpiration by Radiation,” Proceedings of the National Academy Sciences, Vol. 107, No. 30, 2010, pp. 13372-13377.
[24] S. Kangasjavir, J. NeukerBns, S. Li, E. Aro and G. Noctor, “Photosynthesis, Photorespiration, and Light Signalling in Defense Responses,” Journal of Experimental Botany, Vol. 63, No. 4, 2012, pp. 1619-1636.
[25] W. Yang, F. Liu, L. Zhou, S. Zhang and S. An, “Growth and Photosynthetic Responses of Canariumpimela and Nepheliumtopengii Seedlings to a Light Gradient,” Agroforest System, Vol. 87, No. 3, 2013, pp. 507-516.
[26] P. X. Su, L. X. Zhang, M. W. Du, Y. R. Bi, A. F. Zhao and X. M Liu, “Photosynthetic Character and Water Use Efficiency of Different Leaf Shapes of Populuseuphratica and Their Response to CO2 Enrichment,” Acta PhytoecologicaSinica, Vol. 27, 2003, pp. 34-40.
[27] Y. Cao, B. Zhou, S. Chen, J. Xiao and X. Wang, “The Photosynthetic Physiological Properties of Illiciumlanceolatum Plants Growing under Different Light Intensity Conditions,” African Journal of Agricultural Research, Vol. 26, No. 6, 2011, pp. 5736-5741.
[28] F. H. Whatley and F. R. Whatley, “A Luz e a Vida das Plantas: Temas de Biologia,” EDUSP, São Paulo, 1982, Vol. 30, p. 101.
[29] A. P. Alvarenga, S. A. Botelho and I. M. Pereira, “Evaluation of Natural Recovery of Ciliary Forests in Spring in the South Area of Minas Gerais,” Cerne, Vol. 12, No. 4, 2006, pp. 360-372.
[30] S. F. R. Rocha, L. C. Ming, F. C. M. Chaves and F. M. Scarda, “Role of Light and Phytochrome on Piper aduncun L. Germination: An Adaptive and Environmental Approach,” Journal of Herbs, Spices & Medicinal Plant, Vol. 11, No. 3, 2008, pp. 85-96.
[31] V. L. Engel and F. Poggiani, “Study of Foliar Chlorophyll Concentration and Its Light Absorption Spectrum as Related to Shading at the Juvenile Phase of Four Native Forest Tree Species,” Brazilian Journal of Plant Physiology, Vol. 3, No. 1, 1991, pp. 39-45.
[32] Y. Tsunoyama, K. Morikawa, T. Shiina and Y. Toyoshima, “Blue Light Specific and Differential Expression of Plastid Sigma Factor, Sig5 in Arabdopsis thaliana,” FEBS Letters, Vol. 516, No. 1, 2002, pp. 225-228.
[33] W. Larcher, “Physiological Plant Ecology,” 4th Edition, Springer, Berlin, 2004, p. 531.
[34] A. A. M. Melo and A. A. Alvarenga, “Shading of ‘Pacifica White’ Catharanthusroseus (L.) G. Don Plants with Colored Nets: Vegetative Development,” Ciência e Agrotecnologia, Vol. 33, No. 2, 2009, pp. 514-520.
[35] R. Martins, A. A. Alvarenga, E. M. Castro, A. P. O. Silva and E. Alves, “Pigmentscontentand Alfavaca-Cravo Chloroplast Structure Cultivate Undercolored Nets,” Ciência Rural, Vol. 39, No. 1, 2009, pp. 82-87.
[36] L. Taiz and E. Zeiger, “Plant Physiology,” 4th Edition, Sinauer, Sunderland, Massachusetts, 2009, p. 719.
[37] M. I. Oliveira, E. M. Castro, L. C. B. Costa and C. Oliveira, “Biometric, Anatomical and Physiological Aspects of Artemisia vulgaris L. Grown under Colored Screens,” Revista Brasileira de Plantas Medicinais, Vol. 11, No. 1, 2009, pp. 56-62.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.