Synthesis, Spectroscopic Investigations, Quantum Chemical Studies (Ab-initio & DFT) and Antimicrobial Activities of 3-(3-Chloro-4,5-dimethoxy-phenyl)-1-(4, 5-dimethoxy-2-methyl-Phenyl) prop-2-en-1-one


The chalcones (1,3-diaryl-2-propenones) and their derivatives are important intermediates in organic synthesis and have widespread applications in medicinal industry. The title choloro chalcone derivative, 3-(3-chloro-4,5-dimethoxyphenyl)-1-(4,5-dimethoxy-2-methyl phenyl) prop-2-en-1-one, has been synthesized. It is characterized by FTIR, 1H NMR, 13C NMR and single crystal X-ray diffraction. Title compound crystallizes in monoclinic space group C2/c with a = 23.540(11) ?, b = 9.738(4) ?, c = 17.305(7) ?, β = 106.37 (3)°, V = 3806(3) ?3 and Z = 8. The mean plane of the two substituted benzene rings are twisted by 66.29 (12)° with respect to each other. Ab-initio and density functional Theory (DFT) calculations have been carried out for the title molecule using RHF/6-311G and B3LYP/6-311G basis set respectively. The calculated results show that the predicted geometry can well reproduce structural parameters. In addition, frontier molecular orbitals and Mullikan charge distributions are carried out by using RHF and B3LYP methods. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Numbers of weak but significant interactions like C-H···O, C-H···π and π-π are involved in the stability of the structure. The weak π-π stacked interaction involves the centroids of the methyl phenyl rings with Cg-Cg separation distance of 3.857(2) ?. Synthesized compound has been screened for its antimicrobial activity against different panels of organisms.

Share and Cite:

U. Patel, S. Gandhi, V. Barot and M. Patel, "Synthesis, Spectroscopic Investigations, Quantum Chemical Studies (Ab-initio & DFT) and Antimicrobial Activities of 3-(3-Chloro-4,5-dimethoxy-phenyl)-1-(4, 5-dimethoxy-2-methyl-Phenyl) prop-2-en-1-one," Crystal Structure Theory and Applications, Vol. 2 No. 4, 2013, pp. 167-175. doi: 10.4236/csta.2013.24023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. K. Awasthi, N. Mishra, B. Kumar, M. Sharma, A. Bhattacharya, L. C. Mishra and V. K. Bhasin, “Potent Antimalarial Activity of Newly Synthesized Substituted Chalcone Analogs in Vitro,” Medicinal Chemistry Research, Vol. 18, No. 6, 2009, pp. 407-420.
[2] A. Valla, B. Valla, D. Cartier, R. Le Guillou, R. Labia, L. Florent, S. Charneau, J. Schrevel and P. Potier, “New Syntheses and Potential Antimalarial Activities of New ‘Retinoid-Like Chalcones,’ ” European Journal of Medicinal Chemistry, Vol. 41, No. 1, 2006, pp. 142-146.
[3] C. Echeverria, J. F. Santibanez, O. Donoso-Tauda, C. A. Escobar and R. R. Tagle, “Structural Antitumoral Activity Relationships of Synthetic Chalcones,” International Journal of Molecular Sciences, Vol. 10, No. 1, 2009, pp. 221-231.
[4] E. Szliszka, Z. P. Czuba, B. Mazur, L. Sedek, A. Paradysz and W. Krol, “Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells,” International Journal of Molecular Sciences,” Vol. 11, No. 1, 2010, pp. 1-13.
[5] S. Cheenpracha, C. Karalai, C. Ponglimanont, S. Subhadhirasakul and S. Tewtrakal, “Anti-HIV-1 Protease Activity of Compounds from Boesenbergia Pandurata,” Bioorganic and Medicinal Chemistry, Vol. 14, No. 6, 2006, pp. 1710-1714.
[6] N. M. Bhatia, K. R. Mahadik and M. S. Bhatia, “QSAR Analysis of 1, 3-Diaryl-2-propen-1-ones and Their Indole Analogs for Designing Potent Antibacterial Agents,” Chemical Papers, Vol. 63, No. 4, 2009, pp. 456-463.
[7] K. L. Lahtchev, D. I. Batovska, S. P. Parushev, V. M. Ubiyvovk and A. A. Sibirny, “Antifungal Activity of Chalcones: A Mechanistic Study Using Various Yeast Strains,” European Journal of Medicinal Chemistry, Vol. 43, No. 10, 2008, pp. 2220-2228.
[8] M. Satyanarayana, P. Tiwari, B. K. Tripathi, A. K. Srivastava and R. Pratap, “Synthesis and Antihyperglycemic Activity of Chalcone Based Aryloxypropanolamines,” Bioorganic and Medicinal Chemistry, Vol. 12, No. 5, 2004, pp. 883-889.
[9] V. V. Serra, F Camoes, S. I. Vieira, M. A. F. Faustino, J. P. C. Tomé, D. C. G. A. Pinto, M. G. P. M. S. Neves, A. C. Tomé, A. M. S. Silva, E. F. da Cruz e Silva and J. A. S. Cavaleiro, “Synthesis and Biological Evaluation of Novel Chalcone-Porphyrin Conjugates,” Acta Chemica Solvenica, Vol. 56, 2009, pp. 603-611.
[10] U. H. Patel, S. A. Gandhi, V. M. Barot and M. C. Patel, “3-(2-Chloro-3-hydroxy-4-methoxyphenyl)-1-(4,5-dimethoxy-2-methylphenyl)-prop-2-en-1-one,” Acta Crystallography, Vol. E68, 2009, pp. o2926-o2927.
[11] U. H. Patel and S. A. Gandhi, “Quantum Chemical Studies on Crystal Structures of Sulfacetamide and Sulfasalazine,” Indian Journal of Pure and Applied Physics, Vol. 49, 2008, pp. 263-269.
[12] G. M. Sheldrick, “A Short History of SHELX,” Acta Crystallographica, Vol. A64, No. 1, 2008, pp. 112-122.
[13] A. D. Becke, “A New Mixing of Hartree-Fock and Local Density-Functional Theories,” The Journal of Chemical Physics, Vol. 98, No. 2, 1993, pp. 1372-1377.
[14] B. G. Jhonson, P. M. Gill and J. A. Pople, “The Performance of a Family of Density Functional Methods,” The Journal of Chemical Physics, Vol. 98, No. 7, 1993, pp. 5612-5626.
[15] C. Lee, W. Yang and R. G. Parr, “Development of the Colic-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review B, Vol. B37, No. 2, 1988, pp. 785-789.
[16] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, “Gaussian 09, Revision A.1,” Gaussian, Inc., Wallingford, 2009.
[17] R. Dennington, T. Keith and J. Millam, “Gauss View Version 5,” Semichem Inc., Shawnee Mission, 2009.
[18] J. Bernstein, R. E. Davis and L. Shimoni, “Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals,” Angewandte Chemie International Edition in English, Vol. 34, No. 15, 1995, pp. 1555-1573.
[19] J. F. Malone, C. M. Murray, M. H. Charlton, R. Docherty and A. J. Lavrry, “X-H···π (phenyl) Interactions Theoretical and Crystallographic Observations,” Journal of Chemical Society, Vol. 93, No. 19, 1997, pp. 3429-3436.
[20] B. Yilmaz, H. Saracoglu, N. Caliskan, I. Yilmaz and A. Cukurovali, “X-Ray Diffraction and Theoretical Approach to the Molecular Structure of (E)-2-(2-(1,3-dioxoisoindolin-2-yl)-1-(3-phenyl-3-methylcyclobutyl)ethylidene) Hydrazine Carboxamide,” Journal of Chemical Crystallography, Vol. 42, No. 8, 2012, pp. 897-904.
[21] National Committee for Clinical Laboratory Standards (NCCLS), “Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts,” Approved Standard, 2nd Edition, NCCLS Document M27-A2, 2002.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.