2).trim() == cookieName.trim() + "=") {//如果存在该cookie的话就将cookie的值拿出来 // cookieValue = cookie.substring(cookieName.length + 2, cookie.length); // break // } // } // } // if (cookieValue != "" && cookieValue != null) {//如果存在指定的cookie值 // return false; // } // else { // // return true; // } // } // function ShowTwo(webUrl){ // alert("22"); // $.funkyUI({url:webUrl,css:{width:"600",height:"500"}}); // } //window.onload = pdfdownloadjudge;
JMP> Vol.4 No.12, December 2013
Share This Article:
Cite This Paper >>

Atom-Field Entanglement inside a Cylindrical Nanotube

Abstract Full-Text HTML XML Download Download as PDF (Size:375KB) PP. 1597-1603
DOI: 10.4236/jmp.2013.412197    2,376 Downloads   3,534 Views  
Author(s)    Leave a comment
S. Al-Awfi

Affiliation(s)

Department of Physics, Taibah University, Medina, KSA.

ABSTRACT

This work presents the entanglement between an electromagnetic field and two-level atom situated inside a quantum optical system. Our optical model is based on cylindrical tube with a hole diameter of the order of nanoscale which leads to only the lowest order mode can exist. Numbers of the statistical features of effective Hamiltonian such as the temporal evolution of the atomic inversion and the von Neumann entropy are evaluated. We have evaluated the atomic inversion and we demonstrate that the atom still in maximal entangled state when the radius of tube a is large. We have used the von Neumann entropy to measure the degree of that entanglement. The results illustrate that the effect of the radius of tube a changes the quasi-period of the field entropy and therefore the entanglement process.

KEYWORDS

Atomic Inversion; Maximal Entangled States; Degree of Entanglement

Cite this paper

S. Al-Awfi, "Atom-Field Entanglement inside a Cylindrical Nanotube," Journal of Modern Physics, Vol. 4 No. 12, 2013, pp. 1597-1603. doi: 10.4236/jmp.2013.412197.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Nielsen and I. Chuang, “Quantum Computation and Information,” Cambridge University Press, Cambridge, 2000.
[2] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko and Y. Shih, Physical Review Letters, Vol. 75, 1995, pp. 4337-4342.
http://dx.doi.org/10.1103/PhysRevLett.75.4337
[3] B. Kraus and J. I. Cirac, Physical Review Letters, Vol. 92, 2004, pp. 013602-013608.
http://dx.doi.org/10.1103/PhysRevLett.92.013602
[4] S. Sorensen and K. Molmer, Physical Review Letters, Vol. 90, 2003, pp. 127903-127908.
http://dx.doi.org/10.1103/PhysRevLett.90.127903
[5] C. Marr, A. Beige and G. Rempe, Physical Review A, Vol. 68, 2003, pp. 033817-033822.
http://dx.doi.org/10.1103/PhysRevA.68.033817
[6] K. Molmer, Optics Communications, Vol. 179, 2000, pp. 429-435.
[7] J. I. Cirac, P. Zoller, H. J. Kimble and H. Mabuchi, Physical Review Letters, Vol. 78, 1997, pp. 3221-3226.
http://dx.doi.org/10.1103/PhysRevLett.78.3221
[8] S. A. Al-Awfi and E. M. Khalil, International Review of Physics, Vol. 3, 2008, pp. 147-153.
[9] E. M. Khalil, Journal of Modern Physics, Vol. 2, 2011, pp. 724-729. http://dx.doi.org/10.4236/jmp.2011.27085
[10] S. Marksteiner, C. M. Savage, P. Zoller and S. L. Rolston, Physical Review A, Vol. 50, 1994, pp. 2680-2690.
http://dx.doi.org/10.1103/PhysRevA.50.2680
[11] M. A. Ol’Shanii, Y. B. Ovchinnkov and V. S. Letokhov, Optics Communication, Vol. 98, 1993, pp. 77-79.
http://dx.doi.org/10.1016/0030-4018(93)90761-S
[12] M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman and D. Z. Anderson, Physical Review A, Vol. 53, 1996, pp. R648-R651.
http://dx.doi.org/10.1103/PhysRevA.53.R648
[13] S. Al-Awfi and M. Babiker, Physical Review A, Vol. 61, 2000, Article ID: 033401.
http://dx.doi.org/10.1103/PhysRevA.61.033401
[14] S. Al-Awfi and M. Babiker, Physical Review A, Vol. 58, 1998, pp. 4768-4778.
http://dx.doi.org/10.1103/PhysRevA.58.4768
[15] J. P. Dowling and J. Gea-Banacloche, Advances in Atomic, Molecular, and Optical Physics, Vol. 37, 1996, pp. 1-94.
http://dx.doi.org/10.1016/S1049-250X(08)60098-1
[16] H. Nha and W. Jhe, Physical Review A, Vol. 56, 1997, pp. 2213-2219. http://dx.doi.org/10.1103/PhysRevA.56.2213
[17] S. Al-Awfi, Indian Journal of Physics, Vol. 8, 2013, pp. 819-825. http://dx.doi.org/10.1007/s12648-013-0289-1
[18] M. M. A. Ahmed, E. M. Khalil and A.-S. F. Obada, Optics Communications, Vol. 254, 2005, pp. 76-84.
http://dx.doi.org/10.1016/j.optcom.2005.05.016
[19] A.-S. F. Obada, M. M. A. Ahmed and E. M. Khalil, Journal of Modern Optics, Vol. 53, 2006, pp. 1149-1155.
http://dx.doi.org/10.1080/09500340600551440
[20] E. Hinds, Advances in Atomic, Molecular, and Optical Physics, Vol. 2, 1993, pp. 1-56.
[21] S. Al-Awfi, S. Bougouffa and M. Bawa’aneh, International Journal of Nanomanufacturing, Vol. 4, 2009, pp. 92-98. http://dx.doi.org/10.1504/IJNM.2009.028115

  
comments powered by Disqus
JMP Subscription
E-Mail Alert
JMP Most popular papers
Publication Ethics & OA Statement
JMP News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.