Atom-Field Entanglement inside a Cylindrical Nanotube

DOI: 10.4236/jmp.2013.412197   PDF   HTML   XML   2,463 Downloads   3,635 Views  


This work presents the entanglement between an electromagnetic field and two-level atom situated inside a quantum optical system. Our optical model is based on cylindrical tube with a hole diameter of the order of nanoscale which leads to only the lowest order mode can exist. Numbers of the statistical features of effective Hamiltonian such as the temporal evolution of the atomic inversion and the von Neumann entropy are evaluated. We have evaluated the atomic inversion and we demonstrate that the atom still in maximal entangled state when the radius of tube a is large. We have used the von Neumann entropy to measure the degree of that entanglement. The results illustrate that the effect of the radius of tube a changes the quasi-period of the field entropy and therefore the entanglement process.

Share and Cite:

S. Al-Awfi, "Atom-Field Entanglement inside a Cylindrical Nanotube," Journal of Modern Physics, Vol. 4 No. 12, 2013, pp. 1597-1603. doi: 10.4236/jmp.2013.412197.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Nielsen and I. Chuang, “Quantum Computation and Information,” Cambridge University Press, Cambridge, 2000.
[2] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko and Y. Shih, Physical Review Letters, Vol. 75, 1995, pp. 4337-4342.
[3] B. Kraus and J. I. Cirac, Physical Review Letters, Vol. 92, 2004, pp. 013602-013608.
[4] S. Sorensen and K. Molmer, Physical Review Letters, Vol. 90, 2003, pp. 127903-127908.
[5] C. Marr, A. Beige and G. Rempe, Physical Review A, Vol. 68, 2003, pp. 033817-033822.
[6] K. Molmer, Optics Communications, Vol. 179, 2000, pp. 429-435.
[7] J. I. Cirac, P. Zoller, H. J. Kimble and H. Mabuchi, Physical Review Letters, Vol. 78, 1997, pp. 3221-3226.
[8] S. A. Al-Awfi and E. M. Khalil, International Review of Physics, Vol. 3, 2008, pp. 147-153.
[9] E. M. Khalil, Journal of Modern Physics, Vol. 2, 2011, pp. 724-729.
[10] S. Marksteiner, C. M. Savage, P. Zoller and S. L. Rolston, Physical Review A, Vol. 50, 1994, pp. 2680-2690.
[11] M. A. Ol’Shanii, Y. B. Ovchinnkov and V. S. Letokhov, Optics Communication, Vol. 98, 1993, pp. 77-79.
[12] M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman and D. Z. Anderson, Physical Review A, Vol. 53, 1996, pp. R648-R651.
[13] S. Al-Awfi and M. Babiker, Physical Review A, Vol. 61, 2000, Article ID: 033401.
[14] S. Al-Awfi and M. Babiker, Physical Review A, Vol. 58, 1998, pp. 4768-4778.
[15] J. P. Dowling and J. Gea-Banacloche, Advances in Atomic, Molecular, and Optical Physics, Vol. 37, 1996, pp. 1-94.
[16] H. Nha and W. Jhe, Physical Review A, Vol. 56, 1997, pp. 2213-2219.
[17] S. Al-Awfi, Indian Journal of Physics, Vol. 8, 2013, pp. 819-825.
[18] M. M. A. Ahmed, E. M. Khalil and A.-S. F. Obada, Optics Communications, Vol. 254, 2005, pp. 76-84.
[19] A.-S. F. Obada, M. M. A. Ahmed and E. M. Khalil, Journal of Modern Optics, Vol. 53, 2006, pp. 1149-1155.
[20] E. Hinds, Advances in Atomic, Molecular, and Optical Physics, Vol. 2, 1993, pp. 1-56.
[21] S. Al-Awfi, S. Bougouffa and M. Bawa’aneh, International Journal of Nanomanufacturing, Vol. 4, 2009, pp. 92-98.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.