The Triggering Role of Carrier Mobility in the Fractional Quantum Hall Effect Formation—An Evidence in Graphene

Abstract Full-Text HTML XML Download Download as PDF (Size:778KB) PP. 1591-1596
DOI: 10.4236/jmp.2013.412196    2,880 Downloads   4,184 Views  

ABSTRACT

Recent experiments with suspended graphene have indicated the crucial role of carrier mobility in the competition between Laughlin collective state and insulating state, probably of Wigner-crystal-type. Moreover, the fractional quantum Hall effect (FQHE) in graphene has been observed at a low carrier density where the interaction is reduced as a result of particles dilution. This suggests that the interaction may not be a sole factor in the triggering of FQHE as it was expected basing on the standard formulation of the composite fermion model. Here, the topological arguments are presented to explain the observed features of the FQHE in graphene and the triggering role of carrier mobility in formation of the Laughlin state.

Cite this paper

J. Jacak and L. Jacak, "The Triggering Role of Carrier Mobility in the Fractional Quantum Hall Effect Formation—An Evidence in Graphene," Journal of Modern Physics, Vol. 4 No. 12, 2013, pp. 1591-1596. doi: 10.4236/jmp.2013.412196.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. B. Laughlin, Physical Review B, Vol. 23, 1981, pp. 5632-5633. http://dx.doi.org/10.1103/PhysRevB.23.5632
[2] K. von Klitzing, G. Dorda and M. Pepper, Physical Review Letters, Vol. 45, 1980, pp. 494-497.
http://dx.doi.org/10.1103/PhysRevLett.45.494
[3] R. B. Laughlin, Physical Review Letters, Vol. 50, 1983, pp. 1395-1398.
http://dx.doi.org/10.1103/PhysRevLett.50.1395
[4] F. D. M. Haldane, Physical Review Letters, Vol. 51, 1983, pp. 605-608.
http://dx.doi.org/10.1103/PhysRevLett.51.605
[5] R. E. Prange and S. M. Girvin, “The Quantum Hall Effect,” Springer Verlag, New York, 1990.
http://dx.doi.org/10.1007/978-1-4612-3350-3
[6] J. K. Jain, Physical Review Letters, Vol. 63, 1990, pp. 199-202. http://dx.doi.org/10.1103/PhysRevLett.63.199
[7] O. Heinonen, “Composite Fermions,” World Sc., Singapore, 1998.
[8] J. K. Jain, “Composite Fermions,” Cambridge UP, Cambridge, 2007.
http://dx.doi.org/10.1017/CBO9780511607561
[9] K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer and P. Kim, Nature, Vol. 462, 2009, pp. 196-199.
http://dx.doi.org/10.1038/nature08582
[10] X. Du, I. Skachko, F. Duerr, A. Luican and E. Y. Andrei, Nature, Vol. 462, 2009, pp. 192-195.
http://dx.doi.org/10.1038/nature08522
[11] P. R. Wallace, Physical Review, Vol. 71, 1947, pp. 622-634. http://dx.doi.org/10.1103/PhysRev.71.622
[12] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Reviews of Modern Physics, Vol. 81, 2009, pp. 109-162.
http://dx.doi.org/10.1103/RevModPhys.81.109
[13] K. Yang, Solid State Communications, Vol. 143, 2007, pp. 27-32. http://dx.doi.org/10.1016/j.ssc.2007.03.051
[14] A. K. Geim and A. H. MacDonald, Physics Today, Vol. 8, 2007, p. 35. http://dx.doi.org/10.1063/1.2774096
[15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature, Vol. 438, 2005, pp. 197-200.
http://dx.doi.org/10.1038/nature04233
[16] Y. Zhang, Y-W. Tan, H. L. Stormer and F. Kim, Nature, Vol. 438, 2005, pp. 201-204.
http://dx.doi.org/10.1038/nature04235
[17] J. W. MacClure, Physical Review, Vol. 104, 1956, pp. 666-671. http://dx.doi.org/10.1103/PhysRev.104.666
[18] Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M. Fazlollahi, J. D. Chudov, J. A. Jaszczak, H. L. Stormer and P. Kim, Physical Review Letters, Vol. 96, 2006, Article ID: 136806.
http://dx.doi.org/10.1103/PhysRevLett.96.136806
[19] D. A. Abanin, I. Skachko, X. Du, E. Y. Andrei and L. S. Levitov, Physical Review B, Vol. 81, 2010, Article ID: 115410. http://dx.doi.org/10.1103/PhysRevB.81.115410
[20] I. Skachko, X. Du, F. Duerr, A. Luican, D. A. Abanin, L. S. Levitov and E. Y. Andrei, Philosophical Transactions of the Royal Society A, Vol. 368, 2010, pp. 5403-5416.
http://dx.doi.org/10.1098/rsta.2010.0226
[21] J. Jacak, I. Józwiak, and L. Jacak, Physics Letters A, Vol. 374, 2009, pp. 346-350.
http://dx.doi.org/10.1016/j.physleta.2009.10.075
[22] J. Jacak, I. Józwiak, L. Jacak and K. Wieczorek, Journal of Physics: Condensed Matter, Vol. 22, 2010, Article ID: 355602.
http://dx.doi.org/10.1088/0953-8984/22/35/355602
[23] N. Read, Semiconductor Science and Technology, Vol. 9, 1994, p. 1859.
http://dx.doi.org/10.1088/0268-1242/9/11S/002
[24] M. G. Laidlaw and C. M DeWitt, Physical Review D, Vol. 3, 1971, pp. 1375-1378.
http://dx.doi.org/10.1103/PhysRevD.3.1375
[25] J. Jacak and L. Jacak, Europhysics Letters, Vol. 92, 2010, Article ID: 60002.
http://dx.doi.org/10.1209/0295-5075/92/60002
[26] P. W. Eliutin and W. D Krivchenkov, “Quantum Mechanics,” Nauka, Moscov, 1976.
[27] Z. Papic, M. O. Goerbig and N. Regnault, Physical Review Letters, Vol. 105, 2010, Article ID: 176802.
http://dx.doi.org/10.1103/PhysRevLett.105.176802
[28] H. P. Dahal, Y. N. Joglekar, K. S. Bedell and A. V. Balatsky, Physical Review B, Vol. 74, 2006, Article ID: 233405. http://dx.doi.org/10.1103/PhysRevB.74.233405
[29] C. Yannouleas, I. Romanovsky and U. Landman, Physical Review B, Vol. 82, 2010, Article ID: 125419.
http://dx.doi.org/10.1103/PhysRevB.82.125419

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.