Share This Article:

Impact of Environmental Factors on the Photosynthesis and Respiration of Young Seedlings of Sargassum thunbergii (Sargassaceae, Phaeophyta)

Abstract Full-Text HTML XML Download Download as PDF (Size:444KB) PP. 27-33
DOI: 10.4236/ajps.2013.412A2004    3,573 Downloads   5,067 Views   Citations

ABSTRACT

Sargassum thunbergii is of great economic and ecological value to sea cucumber cultures and seaweed beds. However, studies on photosynthesis and respiration of S. thunbergii are limited. In this study, a liquid-phase oxygen electrode system and a chlorophyll fluorescence spectrometer were used to determine the photosynthetic characteristics of S. thunbergii seedlings at various light intensities, temperatures, and salinities. The light-saturated net photosynthetic rates, light saturation points, and respiratory rates of germlings were investigated. Results showed that the increase in rate of light saturation point was slow in the first 4 d, rapidly increased from 5 d to 9 d, and then gently increased at the final few days of the 15 d indoor culture period. The photosynthetic rate or respiratory rate of the seedlings rapidly and significantly decreased when the temperature was <10°C or >28°C. Short-term high- or low-salinity shock had significant effect on the photosynthetic and respiratory rates of the seedlings, specifically at 10 and 50 psu. However, the photosynthetic and respiratory rates recovered to the normal levels after 24 h of recovery period, which demonstrated a powerful ion-transport system of the seedlings. These results provided reference for the artificial breeding of S. thunbergii.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Z. Liang, X. Sun, F. Wang, W. Wang and F. Liu, "Impact of Environmental Factors on the Photosynthesis and Respiration of Young Seedlings of Sargassum thunbergii (Sargassaceae, Phaeophyta)," American Journal of Plant Sciences, Vol. 4 No. 12B, 2013, pp. 27-33. doi: 10.4236/ajps.2013.412A2004.

References

[1] J. Tsukidate, “Studies on the Regenerative Ability of the Brown Algae, Sargassum muticum (Yendo) Fensholt and Sargassum tortile C. Agardh,” Hydrobiologia, Vol. 22, 1984, pp. 393-397.
http://dx.doi.org/10.1007/BF00027708
[2] E. X. Zhang, L. J. Yu and X. Xiao, “Studies on Physiological Activity and Biochemistry of Alcohol Extracts from Sargassum thunbergii,” Chinese Journal of Marine Drugs, Vol. 13, No. 3, 1994, pp. 1-10. (In Chinese with English abstract).
[3] F. P. Padilha, F. P. Franca and A. C. Costa, “The Use of Waste Biomass of Sargassum sp. for the Biosorption of Copper from Simulated Semiconductor Effluents,” Bioresource Technology, Vol. 96, No. 13, 2005, pp. 1511-1517.
http://dx.doi.org/10.1016/j.biortech.2004.11.009
[4] H. G. Wu, C. Yu, Z. A. Yao, W. E. Zhang, L. Y. Shi and B. M. Feng, “Analysis of the Nutrient Component in Sargassum thunbergii,” Journal of Dalian University, Vol. 29, No. 3, 2008, pp. 84-86. (In Chinese with English abstract)
[5] Z. Y. Liu, X. Q. Sun and S. L. Fan, “Current Difficulties Encountered and Developmental Strategies of Stichopus japonicus aquaculture,” Feed Industry, Vol. 27, No. 22, 2006, pp. 28-30. (In Chinese with English abstract)
[6] Z. G. Zhao, F. J. Zhao, J. T. Yao, J. M. Lu, P. O. J. Ang and D. L. Duan, “Early Development of Germlings of Sargassum thunbergii (Fucales, Phaeophyta) under Laboratory Conditions,” Journal of Applied Phycology, Vol. 20, No. 5, 2008, pp. 925-931.
http://dx.doi.org/10.1007/s10811-008-9311-y
[7] U. Isamu, “Ecological Studies of Sargassum thunbergii (Mertens) O. Kuntze in Maizuru Bay, Japan Sea,” Journal of Plant Research, Vol. 87, No. 4, 1974, pp. 285-292.
[8] C. H. Koh, Y. Kim and S. G. Kang, “Size Distribution, Growth and Production of Sargassum thunbergii in an Intertidal Zone of Padori, West Coast of Korea,” Hydrobiologia, Vol. 260-261, No. 1, 1993, pp. 207-214.
http://dx.doi.org/10.1007/BF00049021
[9] K. S. Shao, N. Gong, J. X. Wang, D. C. Li and Z. M. Gao, “Study on Population Ecology of Sargassum thunbergii,” Marine Environmental Research, Vol. 29, No. 3, 2010, pp. 332-336. (In Chinese with English abstract)
[10] F. J. Zhao, X. L. Wang, J. D. Liu and D. L. Duan, “Population Genetic Structure of Sargassum thunbergii (Fucales, Phaeophyta) Detected by RAPD and ISSR Markers,” Journal of Applied Phycology, Vol. 19, No. 5, 2007, pp. 409-416. http://dx.doi.org/10.1007/s10811-006-9147-2
[11] X. H. Yi, S. G. Li, P. He, H. S. Hou and L. M. Wang, “AFLP Analysis of Genetic Diversity in Six Wild Populations of Sargassum thunbergii,” Journal of Fishery Sciences of China, Vol. 17, No. 5, 2010, pp. 922-929. (In Chinese with English abstract)
[12] M. Wang, S. G. Li, H. S. Hou and L. M. Wang, “Genetic Structure of Wild Sargassum thunbergii Populations along Dalian Coast: An ISSR Analysis,” Chinese Journal of Ecology, Vol. 29, No. 6, 2010, pp. 1181-1186. (In Chinese with English abstract)
[13] W. Liu, M. Z. Li, H. Y. Wu, D. M. Zhan and G. Ding, “Population Genetic Diversity of sargassum thunbergii in the Coast of China,” Oceanologia et Limnologia Sinica, Vol. 42, No. 4, 2011, pp. 608-611. (In Chinese with English abstract)
[14] F. J. Wang, X. T. Sun and F. Li, “Studies on Sexual Reproduction and Seedling-Rearing of Sargassum thunbergii,” Marine Fisheries Research, Vol. 27, No. 5, 2006, pp. 1-6. (In Chinese with English abstract)
[15] M. Z. Li, G. Ding, D. M. Zhan, B. Yu, W. Liu and H. Y. Wu, “A Method for Early Production of Large-Size Sargassum thunbergii Seedling in North China,” Marine Fisheries Research, Vol. 30, No. 5, 2009, pp. 75-82. (In Chinese with English abstract)
[16] X. T. Sun, F. J. Wang, W. J. Wang, H. T. Jiang, Y. M. Wang, T. Y. Tang and S. Y. Li, “Large Scale Breeding of Sargassum thunbergii Based on Sexual Reproduction,” Progress in Fishery Sciences, Vol. 31, No. 3, 2010, pp. 84-91. (In Chinese with English abstract)
[17] Q. S. Zhang, Y. Z. Tang, S. K. Liu, S. B. Zhang and Z. C. Lu, “Zygote-Derived Seedling Production of Sargassum thunbergii: Focus on Two Frequently Experienced Constraints in Tank Culture of Seaweed,” Journal of Applied Phycology, Vol. 24, No. 4, 2012, pp. 707-714.
http://dx.doi.org/10.1007/s10811-011-9689-9
[18] K. S. Gao and I. Umezaki, “Comparative Photosynthetic Capacities of the Leaves of Upper and Lower Parts of Sargassum Plants,” Botanica Marina, Vol. 31, 1988, pp. 231-236. http://dx.doi.org/10.1515/botm.1988.31.3.231
[19] K. S. Gao and I. Umezaki, “Comparative Studies of Photosynthesis in Different Parts of Sargassum thunbergii,” Japanese Journal of Phycology, Vol. 37, 1989, pp. 7-16.
http://mel.xmu.edu.cn/upload_paper/201155110109-0uwSvX.pdf
[20] K. S. Gao and I. Umezaki, “Studies on Diurnal Photosynthetic Performance of Sargassum thunbergii I. Changes in Photosynthetic under Natrual Sunlight,” Japanese Journal of Phycology, Vol. 37, 1989, pp. 89-98.
http://mel.xmu.edu.cn/upload_paper/201155110109-GefM5l.pdf
[21] K. S. Gao and I. Umezaki, “Studies on Diurnal Photosynthetic Performance of Sargassum thunbergii II. Explanation of Diurnal Photosynthesis Patterns from Examinations in the Laboratory,” Japanese Journal of Phycology, Vol. 37, 1989, pp. 99-104.
http://mel.xmu.edu.cn/upload_paper/201155110109-eVERbP.PDF
[22] K. S. Gao and H. Nakahara, “Effects of Nutrients on the Photosynthesis of Sargassum thunbergii,” Botanica Marina, Vol. 33, 1990, 375-383.
http://dx.doi.org/10.1515/botm.1990.33.5.375
[23] K. S. Gao, “Effects of Seawater Current Speed on the Photosynthetic Oxygen Evolution of Sargassum thunbergii (Phaeophyta),” Japanese Journal of Phycology, Vol. 39, 1991, pp. 291-293. (in Japanese)
[24] Z. R. Liang, F. J. Wang, X. T. Sun, W. J. Wang, C. L. Ding and T. Li, “Effects of Environment Factors on Young Seedlings of Sargassum thunbergii by Chlorophyll Fluorescence Method,” Journal of Fisheries Chinese, Vol. 35, No. 8, 2011, pp. 1225-1232. (In Chinese with English abstract)
[25] S. H. Chu, Q. S. Zhang, S. K. Liu, Y. Z. Tang, S. B. Zhang, Z. C. Lu and Y. Q. Yu, “Tolerance of Sargassum thunbergii Germlings to Thermal, Osmotic and desiccation Stress,” Aquatic Botany, Vol. 96, No. 1, 2012, pp. 1-6.
http://dx.doi.org/10.1016/j.aquabot.2011.09.002
[26] S. H. Chu, Q. S. Zhang, Y. Z. Tang, S. B. Zhang, Z. C. Lu and Y. Q. Yu, “High Tolerance to Fluctuating Salinity Allows Sargassum thunbergii Germlings to Survive and Grow in Artificial Habitat of Full Immersion in Intertidal Zone,” Journal of the Faculty of Applied Biological Science, Vol. 412, 2012, pp. 66-71.
http://dx.doi.org/10.1016/j.jembe.2011.10.025
[27] C. S. Lobban, “Seaweed Ecology and Physiology,” Cambridge University Press, Cambridge, 1994, p. 3.
http://dx.doi.org/10.1017/CBO9780511626210
[28] S. J. Pang, Z. H. Zhang, H. J. Zhao and J. Z. Sun, “Cultivation of the Brown Alga Hizikia fusiformis (Harvey) Okamura: Stress Resistance of Artificially Raised Young Seedlings Revealed by Chlorophyll Fluorescence Measurement,” Journal of Applied Phycology, Vol. 19, No. 5, 2007, pp. 557-565.
http://dx.doi.org/10.1007/s10811-007-9170-y
[29] Y. R. Zhang, F. Liu, T. F. Shan and S. J. Pang, “Stress Resistance of Young Seedlings of Sargassum hornerito a Variety of Temperatures, Irradiances and Salinities Revealed by Chlorophyll Fluorescence Measurements,” South China Fisheries Science, Vol. 5, No. 2, 2009, pp. 1-9. (In Chinese with English abstract)
[30] J. X. Zou, Y. Q. Li, Y. X. Liu, T. W. Zhang and Y. M. Wang, “The Biological Characteristic and Technique of Raft Culture of Sargassum thunbergii,” Shandong Fisheries, Vol. 22, No. 3, 2005, pp. 25-29. (In Chinese with English abstract)
[31] K. Maxwell and G. N. Johnson, “Chlorophyll Fluorescence-A Practical Guide,” Journal of Experimental Botany, Vol. 51, No. 345, 2000, pp. 659-668.
http://dx.doi.org/10.1093/jexbot/51.345.659
[32] H. H. Kobayakawa and K. Imai, “Optimum Dark Adaptation Period for Evaluating the Maximum Quantum Efficiency of Photosystem II in Ozone-Exposed Rice Leaves,” American Journal of Plant Sciences, Vol. 4, No. 9, 2013, pp. 1750-1757.
http://dx.doi.org/10.4236/ajps.2013.49215
[33] Y. U. Balnokin, L. Popova and H. Gimmler, “Further Evidence for an ATP-Driven Sodium Pump in the Marine Alga Tetraselmis (Platymonas) viridi,” Journal of Plant Physiology, Vol. 150, No. 3, 1997, pp. 264-270.
http://dx.doi.org/10.1016/S0176-1617(97)80118-6
[34] R. Serrano, J. M. Mulet, G. Rios, J. A. Marquez, I. F. de Larrinoa, M. Leube, I. Mendizabal, A. Pascual-Ahuir, M. Proft, R. Ros and C. Montesinos, “A Glimpse of the Mechanisms of Ion Homeostasis during Salt Stress,” Journal of Experimental Botany, Vol. 50, 1999, pp. 1023-1036.
http://jxb.oxfordjournals.org/content/50/Special_Issue/1023.full.pdf
[35] Y. Liang, L. X. Feng, H. Y. Tian and C. L. Yin, “Effects of Salt Stress on the Growth and Chlorophyll Fluorescence of Pyramidomonas sp,” Periodical of Ocean University of China, Vol. 36, No. 5, 2006, pp. 726-732. (In Chinese with English abstract)
[36] Y. Kuwada and Y. Ohta, “Effect of Salinity on Hydrogen Production and Growth of Lyngbya sp.,” Journal of the Faculty of Applied Biological Science, Vol. 30, No. 1, 1994, pp. 13-18.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.