The Black Sea Dating Game and Holocene Marine Transgression

Abstract

Dating of major sea-level changes using shells or calcareous microfossils is prone to errors in semi-enclosed marine environments where inputs of seawater and river water vary over time and space. The need to refine mollusc-based age estimates for the rate of the Holocene marine transgression in the Black Sea is the focus of multiple palaeoceanographic and archaeological studies. This ongoing “dating game” seeks to clarify conflicting evidence for a hypothetical catastrophic marine flood that forced the emigration of Neolithic farmers from the shores of a Holocene freshwater lake in the Black Sea. The potential importance of confirming or rejecting this megaflood hypothesis has led to multiple attempts at refining the chronology of the marine transgression and quantifying the palaeosalinity of the Black Sea surface water during the Holocene. Here we report that six new AMS radiocarbon ages of 8890 ± 50 to 8450 ± 40 yr BP were obtained for wood, grass and sedge leaves from peat layers in Core 342 at 33.16 - 32.71 m below present sea level on the Ukrainian Shelf. These plant materials provide critical new ages for quantifying Black Sea carbon reservoir issues. The accuracy of our new AMS wood/peatages is independently supported by palynochronological correlation. The ages of our plant materials have ~100 years precisionandare ~420 - 520 years younger than those previously reported for unsorted detrital peat in Core 342. Paired mollusc—wood ages for brackish—freshwater Dreissena polymorpha shell from detrital peat also shows that an inaccuracy of >1120 yr can arise for shells during times when carbon reservoir values in the semi-isolated, brackish-water Black Sea could depart significantly from global average. Our revised sea level curve shows a gradual early Holocene transgression from water depths of -45.9 to -32.8 m, with initial Mediterranean inflow by 8.9 ka BP.

Share and Cite:

P. Mudie, V. Yanko-Hombach and S. Kadurin, "The Black Sea Dating Game and Holocene Marine Transgression," Open Journal of Marine Science, Vol. 4 No. 1, 2014, pp. 1-7. doi: 10.4236/ojms.2014.41001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. A. Nicholas, A. R. Chivas, C. V. Murray-Wallace and D. Fink, “Prompt Transgression and Gradual Salinisation of the Black Sea during the Early Holocene Constrained by Amino Acid Racemization and Radiocarbon Dating,” Quaternary Science Reviews, Vol. 30, No. 27, 2011, pp. 3769-3790.
[2] V. Yanko-Hombach, “Controversy over Noah’s Flood in the Black Sea: Geological and Foraminiferal Evidence from the Shelf,” In: V. Yanko-Hombach, et al., Ed., The Black Sea Flood Question: Changes in Coastline, Climate and Human Settlement, Springer, Dordrecht, 2007, pp. 149-203. http://dx.doi.org/10.1007/978-1-4020-5302-3_7
[3] W. B. F. Ryan, W. C. Pitman III, C. O. Major, K. Shimkus, V. Moskalenko, J. A. Jones, P. Dimitrov, N. Gorur, M. SakinC and H. Yuce, “An Abrupt Drowning of Black Sea Shelf,” Marine Geology, Vol. 138, No. 1, 1997, pp. 119-126.
http://dx.doi.org/10.1016/S0025-3227(97)00007-8
[4] C. S. M. Turney and H. Brown, “Catastrophic Early Holocene Sea Level Rise, Human Migration and the Neolithic Transition in Europe,” Quaternary Science Reviews, Vol. 26, No. 17-18, 2007, pp. 2036-204.
http://dx.doi.org/10.1016/j.quascirev.2007.07.003
[5] P. M.Dolukhanov, S. V. Kadurin and E. P. Larchenkov, “Dynamics of the Coastal North Black Sea Area in Late Pleistocene and Holocene and Early Human Dispersal,” Quaternary International, Vol. 197, No. 1-2, 2009, pp. 27-34. http://dx.doi.org/10.1016/j.quaint.2008.04.002
[6] K. N. Mertens, L. R. Bradley, Y. Takano, P. J. Mudie, F. Marret, A. E. Aksu, R. N. Hiscott, T. J. Verleye, E. A. Mousing, L. L. Smyrnova, S. Bagheri, M. Mansor, V. Pospelova and K. Matsuoka, “Quantitative Estimation of Holocene Surface Salinity Variation in the Black Sea Using Dinoflagellate Cyst Process Length,” Quaternary Science Reviews, Vol. 39, 2012, pp. 45-59.
http://dx.doi.org/10.1016/j.quascirev.2012.01.026
[7] W. A. Nicholas, A. R. Chivas, S. Kadurin, C. V. Murray-Wallace and D. Fink, “Chronology of an Early Holocene Transgressive Black Sea,” In: A. Gilbert and V. Yanko-Hombach, Eds., Extended Abstracts of the 5th Plenary Meeting and Field Trip of IGCP-521—INQUA 0501 Programs, Izmir-Canakkale, 22-31 August 2009, pp. 129-131.
[8] V. Yanko-Hombach, P. J. Mudie, S. Kadurin and E. Larchenkov, “Holocene Marine Transgression in the Black Sea: New Evidence from the Northwestern Black Sea Shelf,” Quaternary International, 2013, pp. 1-19.
http://www.sciencedirect.com/science/article/pii/S10406182130044266
[9] N. V. Esin, V. Yanko-Hombach and O. N. Kukleva, “Mathematical Model of the Late Pleistocene and Holocene Transgressions of the Black Sea,” Quaternary International, Vol. 225, No. 2, 2010, pp. 180-190.
http://dx.doi.org/10.1016/j.quaint.2009.11.014
[10] R. N. Hiscott, A. E. Aksu, P. J. Mudie, F. Marret, T. Abrajano, M. A. Kaminski, J. Evans, A. I. Cakiroglu and D. Yasar, “A Gradual Drowning of the Southwestern Black Sea Shelf: Evidence for a Progressive Rather than Abrupt Holocene Reconnection with the Eastern Mediterranean Sea through the Marmara Sea Gateway,” Quaternary International, Vol. 167-168, 2007, pp. 19-34.
http://dx.doi.org/10.1016/j.quaint.2006.11.007
[11] G. Soulet, G. Ménot, V. Garreta, F. Rostek, S. Zaragosi, G. Lericolais and E. Bard, “Black Sea ‘Lake’ Reservoir Age Evolution Since the Last Glacial-Hydrologic and Climatic Implications,” Earth Planetary Science Letters, Vol. 308, No. 1-2, 2011, pp. 245-258.
http://dx.doi.org/10.1016/j.epsl.2011.06.002
[12] A. Bahr, F. Lamy, H. W. Arz, C. O. Major, O. Kwiecien and G. Wefer, “Abrupt Changes of Temperature and Water Chemistry in the Late Pleistocene and Early Holocene Black Sea,” Geochemistry, Geophysics, Geosystems, Vol. 9, No. 1, 2008, Article ID: Q01004.
http://dx.doi.org/10.1029/2007GC001683
[13] N. Gorur, N. Cagatay, O. Emre, B. Alpar, M. SakinC, Y. Islamoglu, O. Algan, T. Erkal, M. Keser, R. Akkok and G. Karlik, “Is the Abrupt Drowning of the Black Sea Shelf at Myth?” Marine Geology, Vol. 176, No. 1, 2001, pp. 65-73. http://dx.doi.org/10.1016/S0025-3227(01)00148-7
[14] G. Siani, M. Paterne, M. Arnold, E. Bard, B. Métivier, N. Tisnerat and F. Bassinot, “Radiocarbon Reservoir Ages in the Mediterranean Sea and Black Sea,” Radiocarbon, Vol. 42, No. 2, 2000, pp. 271-280.
[15] H. Bruckner, D. Kelterbaum, O. Marunchak, A. Porotov, and A. Vott, “The Holocene Sea Level Story Since 7500 BP—Lessons from the Eastern Mediterranean, the Black and the Azov Seas,” Quaternary International, Vol. 225, No. 2, 2010, pp. 160-179.
http://dx.doi.org/10.1016/j.quaint.2008.11.016
[16] L. Giosan, J. P. Donnelly, S. Constantinescu, F. Filip, I. Ovejanu, A. Vespremeanu-Stroe, E. Vespremeanu and G. A. T. Duller, “Young Danube Delta Documents Stable Black Sea Level Since the Middle Holocene: Morphodynamic, Paleogeographic, and Archaeological Implications,” Geology, Vol. 34, No. 9, 2006, pp. 757-760.
http://dx.doi.org/10.1130/G22587.1
[17] M. Filipova-Marinova, L. Giosan, H. Angelova, A. Preisinger, Pavlov and S. Vergiev, “Palaeoecology of Submerged Prehistoric Settlements in Sozopol Harbour, Bulgaria,” In: J. Benjamin, et al., Eds., Submerged Prehistory, Oxbow Books, Oxford, 2011, pp. 230-244.
[18] M. Filipova-Marinova, “Palynostratigraphy of Pleistocene and Holocene Sediments from the Western Black Sea,” Journal Environmental Microbiolog, Micropaleontology, Meiobiology, Vol. 3, 2006, pp. 9-13.
[19] O. Kwiecien, H. W. Arz, F. Lamy, S. Wulf, A. Bahr, U. Rohl and G. H. Haug, “Estimated Reservoir Ages of the Black Sea Since the Last Glacial,” Radiocarbon, Vol. 50, No. 1, 2008, pp. 99-118.
[20] P. J. Mudie, S. A. G. Leroy, F. Marret, N. P. Gerasimenko, S. E. A. Kholeif, T. Sapelko and M. Filipova-Marinova, “Nonpollen Palynomorphs: Indicators of Salinity and Environmental Change in the Caspian-Black SeaMediterranean Corridor,” Geological Society America Special Paper, Vol. 473, 2011, pp. 89-114.
http://dx.doi.org/10.1130/2011.2473(07)
[21] K. A. Arslanov, L. A. Saveljeval, N. A. Gey, V. A. Klimanov, S. B. Chernov, G. M. Chernova, G. F. Kuzmin, T. V. Tertychnayal, D. A. Subettos and V. P. Denisenkov, “Chronology of Vegetation and Paleoclimatic Stages of Northwestern Russia during the Late Glacial and Holocene,” Radiocarbon, Vol. 41, No. 1, 1999, pp. 25-45.
[22] R. Gale and D. F. Cutler, “Plants in Archaeology: Identification Manual of Vegetative Plant Materials Used in Europe and the Southern Mediterranean to c. 1500,” Westbury Publications and Royal Botanic Gardens, Kew, 2000.
[23] H. Coops, J. Hanganu, M. Tudor and W. Oosterberg, “Classification of Danube Delta Lakes Based on Aquatic Vegetation and Turbidity,” Hydrobiologia, Vol. 415, 1999, pp. 187-191.
http://dx.doi.org/10.1023/A:1003856927865
[24] R. Byrne, B. L. Ingram, S. Starratt, F. Malamud-Roam, J. N. Collins and M. E. Conrad, “Carbon-Isotope, Diatom, and Pollen Evidence for Late Holocene Salinity Change in a Brackish Marsh in the San Francisco Estuary,” Quaternary Research, Vol. 55, No. 1, 2001, pp. 66-76.
http://dx.doi.org/10.1006/qres.2000.2199
[25] J. R. L. Allan, “Geological Impacts on Coastal Wetland Landscapes: Some General Effects of Sediment Autocompaction in the Holocene of Northwest Europe,” The Holocene, Vol. 9, No. 1, 1999, pp. 1-12.
http://dx.doi.org/10.1191/095968399674929672

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.